F
-
o
2g
W
J
=
-

9th Italian Conference, ICTC
Siena, Italy, October 2005
Proceedings

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3701

Mario Coppo Elena Lodi
G. Michele Pinna (Eds.)

Theoretical
Computer Science

Oth Italian Conference, ICTCS 2005
Siena, Italy, October 12-14, 2005
Proceedings

@ Springer

Volume Editors

Mario Coppo

Universita di Torino, Dipartimento di Informatica
C. Svizzera 185, 10149 Torino, Italy

E-mail: coppo@di.unito.it

Elena Lodi

Universita di Siena

Dipartimento di Scienze Matematiche e Informatiche
Pian dei Mantellini 44, 53100 Siena, Italy

E-mail: lodi @unisi.it

G. Michele Pinna

Universita di Siena

Dipartimento di Scienze Matematiche e Informatiche
Pian dei Mantellini 44, 53100 Siena, Italy

and Universita di Cagliari

Dipartimento di Informatica e Matematica

Via Ospedale 72, 09124 Cagliari, Italy

E-mail: gmpinna@unica.it

Library of Congress Control Number: 2005933156

CR Subject Classification (1998): F, E.1, G.1-2

ISSN 0302-9743
ISBN-10 3-540-29106-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29106-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11560586 06/3142 543210

Preface

The 9th Ttalian Conference on Theoretical Computer Science (ICTCS 2005) was
held at the Certosa di Pontignano, Siena, Italy, on October 12-14 2005. The
Certosa di Pontignano is the conference center of the University of Siena; it is
located 8 km away from the town and it is in the Chianti region. The Certosa is
a place full of history (founded in the 15th century, it was set on fire a century
later and reconstructed) and of valuable artworks, like frescoes of the Scuola
Senese.

Previous conferences took place in Pisa (1972), Mantova (1974 and 1989),
L’Aquila (1992), Ravello (1995), Prato (1998), Turin (2001) and Bertinoro (2003).

The conference aims at bringing together computer scientists, especially young
researchers, to foster cooperation, exchange of ideas and results. Great efforts
have been made to attract researchers from all over the world. The main top-
ics of the conference cover all the fields of theoretical computer science and
include analysis and design of algorithms, computability, computational com-
plexity, cryptography, formal languages and automata, foundations of program-
ming languages and program analysis, foundations of artificial intelligence and
knowledge representation, foundations of web programming, natural computing
paradigms (quantum computing, bioinformatics), parallel and distributed com-
putation, program specification and verification, term rewriting, theory of con-
currency, theory of data bases, theory of logical design and layout, type theory,
security, and symbolic and algebraic computation.

The Program Committee, consisting of 16 members, considered 83 papers and
selected 29 for presentation. These papers were selected, after a careful review-
ing process, on the basis of their originality, quality and relevance to theoretical
computer science. In keeping with the previous conferences, ICTCS 2005 was
characterized by the high number of submissions and by the number of differ-
ent countries represented. These proceedings contain the revised versions of the
29 accepted papers together with the invited talks by Luca Cardelli (Biological
Systems as Reactive Systems, abstract), Giuseppe Castagna (Semantic Subtyp-
ing: Challenges, Perspectives, and Open Problems) and Nicola Santoro (Mobile
Agents Computing: Security Issues and Algorithmic Solutions).

Due to the high quality of the submissions, paper selection was a difficult
and challenging task. Each submission was reviewed by at least three reviewers.
We thank all the Program Committee members and the additional reviewers for
their accurate work and for spending so much time in the reviewing process. We
apologize for any inadvertent omission in the list of reviewers.

Following the example of the last ICTCS edition, we encouraged authors
to submit their papers in electronic format. Special thanks are due to Simone
Donetti for setting up a very friendly Web site for this purpose.

VI Preface

Finally, we would like to thank all the authors who submitted papers and all
the conference participants.

October 2005 Mario Coppo
Elena Lodi
G. Michele Pinna

ICTCS 2005

October 12-14, Certosa di Pontignano,
Siena, Italy

Program Co-chairs

Mario Coppo
Elena Lodi

Program Committee

Michele Bugliesi
Mario Coppo
Pierluigi Crescenzi
Giulia Galbiati
Luisa Gargano
Giorgio Ghelli
Roberto Grossi
Benedetto Intrigila
Nicola Leone
Elena Lodi
Flaminia Luccio
Andrea Masini
Giancarlo Mauri
Corrado Priami
Geppino Pucci
Davide Sangiorgi

Organizing Committee

G. Michele Pinna
Sara Brunetti
Elisa Tiezzi

Sponsoring Institutions

Universita di Torino
Universita di Siena

Universita di Venezia
Universita di Torino (Co-chair)
Universita di Firenze
Universita di Pavia

Universita di Salerno
Universita di Pisa

Universita di Pisa

Universita di L’Aquila
Universita di Cosenza
Universita di Siena, (Co-chair)
Universita di Trieste
Universita di Verona
Universita di Milano-Bicocca
Universita di Trento
Universita di Padova
Universita di Bologna

Universita di Cagliari (Chair)
Universita di Siena
Universita di Siena

European Association for Theoretical Computer Science (EATCS)

Dipartimento di Matematica e Informatica “R. Magari”, Universita di Siena

Dipartimento di Informatica, Universita di Torino

Universita degli Studi di Siena
Monte dei Paschi di Siena

VIII Organization

Referees

Tetsuo Asano
Vincenzo Auletta
Benjamin Aziz

Paolo Baldan
Anindya Banerjee
Stefano Baratella
Franco Barbanera
Massimo Bartoletti
Marie-Pierre Béal
Stefano Berardi
Marco Bernardo
Alberto Bertoni
Daniela Besozzi
Chiara Bodei

Paolo Boldi

Hanifa Boucheneb
Linda Brodo

Sara Brunetti
Francesco Buccafurri
Pasquale Caianiello
Tiziana Calamoneri
Felice Cardone

Dario Catalano
Marco Cesati
Federica Ciocchetta
Valentina Ciriani
Antonio Cisternino
Dario Colazzo
Andrea Clementi
Carlo Combi

Paolo D’Arco

Ottavio D’Antona
Christophe Decanniere
Pierpaolo Degano
Giuseppe Della Penna
Gianluca Della Vedova
Gianluca De Marco
Maria Rita Di Berardini
Pietro Di Giannantonio
Susanna Donatelli
Riccardo Dondi
Claudio Eccher
Wolfgang Faber
Riccardo Focardi

Paola Flocchini
Andrea Frosini
Clemente Galdi
Dora Giammarresi
Paola Giannini
Laura Giordano
Gianluigi Greco
Massimiliano Goldwurm
Stefano Guerrini
Giovambattista Ianni
Amos Korman
Ruggero Lanotte
Paola Lecca
Alberto Leporati
Renato Locigno
Fabrizio Luccio
Veli Mékinen
Alessio Malizia
Stefano Mancini
Alberto Marchetti
Spaccamela
Radu Mardare
Luciano Margara
Ines Margaria
Carlo Mereghetti
Alberto Martelli
Donatella Merlini
Filippo Mignosi
Alberto Momigliano
Manuela Montangero
Elisa Mori
Tan Munro
Aniello Murano
Venkatesh Mysore
Matthias Neubauer
Monica Nesi
Mitsunori Ogihara
Linda Pagli
Beatrice Palano
Luigi Palopoli
David Peleg
Paolo Penna
Simona Perri
Carla Piazza

Adolfo Piperno
Nadia Pisanti
Katerina Pokozy
Roberto Posenato
Davide Prandi
Giuseppe Prencipe
Orazio Puglisi
Paola Quaglia
Sven Rahmann
Adele Rescigno
Antonio Restivo
Simone Rinaldi
Lorenzo Robbiano
Simona Ronchi
della Rocca
Gianluca Rossi
Alehandro Russo
Giancarlo Ruffo
Ivano Salvo
Francesco Scarcello
Debora Schuch
Roberto Segala
Andrea Sgarro
Riccardo Silvestri
Maria Simi
Robert Spalek
Renzo Sprugnoli
Frank Christian Stephan
Giorgio Terracina
Elisa Tiezzi
Mauro Torelli
Andrea Torsello
Emilio Tuosto
Ugo Vaccaro
Leonardo Vanneschi
Stefano Varricchio
Maria Cecilia Verri
Bob Walters
Damiano Zanardini
Claudio Zandron
Nicola Zannone

Table of Contents

Invited Contributions

Semantic Subtyping: Challenges, Perspectives, and Open Problems
Giuseppe CAStAGNa . . . oo oo oot e

Biological Systems as Reactive Systems
Luca Cardelli.

Mobile Agents Computing: Security Issues and Algorithmic Solutions
Nicola Santoro

Technical Contributions

Efficient Algorithms for Detecting Regular Point Configurations
Luzi Anderegg, Mark Cieliebak, Giuseppe Prencipe

Pickup and Delivery for Moving Objects on Broken Lines
Yuichi Asahiro, Fiji Miyano, Shinichi Shimoirisa

A Static Analysis of PKI-Based Systems
Benjamin Aziz, David Gray, Geoff Hamilton

Subtyping Object and Recursive Types Logically
Steffen van Bakel, Ugo de’Liguoro c..couiiiiinon..

The Language &: Circuits, Computations and Classical Logic
Steffen van Bakel, Stéphane Lengrand, Pierre Lescanne

Checking Risky Events Is Enough for Local Policies
Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari

The Graph Rewriting Calculus: Confluence and Expressiveness
Clara Bertolissi e

Safe Object Composition in the Presence of Subtyping
Lorenzo Bettini, Viviana Bono, Silvia Likavec

Reachability Analysis in Boxed Ambients
Nadia Busi, Gianluigi Zavattaro

X Table of Contents

Error Mining for Regular Expression Patterns
Giuseppe Castagna, Dario Colazzo, Alain Frisch 160

Reconstructing an Alternate Periodical Binary Matrix from Its
Orthogonal Projections
Marie-Christine Costa, Fethi Jarray, Christophe Picouleau 173

Inapproximability Results for the Lateral Gene Transfer Problem
Bhaskar DasGupta, Sergio Ferrarini, Uthra Gopalakrishnan,
Nisha Raj Paryant oo 182

Faster Deterministic Wakeup in Multiple Access Channels
Gianluca De Marco, Marco Pellegrini, Giovanni Sburlati............ 196

Weighted Coloring: Further Complexity and Approximability Results
Bruno FEscoffier, Jérome Monnot, Vangelis Th. Paschos 205

Quantum Algorithms for a Set of Group Theoretic Problems
Stephen A. Fenner, Yong Zhangc..cuuieiuiiniinennon.. 215

On the Computational Complexity of the L, 1)-Labeling Problem
for Regular Graphs
Jiri Fiala, Jan Kratochvil i 228

A Polymerase Based Algorithm for SAT
Giuditta Franco......... .. 237

Laxity Helps in Broadcast Scheduling
Stanley P.Y. Fung, Francis Y.L. Chin, Chung Keung Poon.......... 251

Enforcing and Defying Associativity, Commutativity, Totality, and
Strong Noninvertibility for One-Way Functions in Complexity Theory

Lane A. Hemaspaandra, Jorg Rothe, Amitabh Sazena............... 265
Synthesis from Temporal Specifications Using Preferred Answer Set
Programming

Stign Heymans, Davy Van Nieuwenborgh, Dirk Vermeir 280

Model Checking Strategic Abilities of Agents Under Incomplete
Information
Wojciech Jamroga, Jirgen Dix i 295

Improved Algorithms for Polynomial-Time Decay and Time-Decay
with Additive Error
Tsvi Kopelowitz, Ely Poral 309

Table of Contents XI

A Theoretical Analysis of Alignment and Edit Problems for Trees
Tetsuji Kuboyama, Kilho Shin, Tetsuhiro Miyahara,
Hirosht Yasuda 323

A Complete Formulation of Generalized Affine Equivalence
Marco Macchetti, Mario Caironi, Luca Breveglieri,
Alessandra Cherubini i 338

A New Combinatorial Approach to Sequence Comparison
Sabrina Mantaci, Antonio Restivo, Giovanna Rosone,
Marinella SCioTtino 348

A Typed Assembly Language for Non-interference
Ricardo Medel, Adriana Compagnoni, Eduardo Bonelli 360

Improved Exact Exponential Algorithms for Vertex Bipartization
and Other Problems
Venkatesh Raman, Saket Saurabh, Somnath Sikdar 375

A Typed Semantics of Higher-Order Store and Subtyping
Jan Schwinghammer 390

Two Variables Are Not Enough
Rick Statmam. 406

Author Index e 411

Semantic Subtyping:
Challenges, Perspectives, and Open Problems

Giuseppe Castagna

CNRS, Ecole Normale Supérieure de Paris, France

Based on joint work with: Véronique Benzaken, Rocco De Nicola,
Mariangiola Dezani, Alain Frisch, Haruo Hosoya, Daniele Varacca

Abstract. Semantic subtyping is a relatively new approach to define subtyping
relations where types are interpreted as sets and union, intersection and nega-
tion types have the corresponding set-theoretic interpretation. In this lecture we
outline the approach, give an apercu of its expressiveness and generality by ap-
plying it to the A-calculus with recursive and product types and to the m-calculus.
We then discuss in detail the new challenges and research perspectives that the
approach brings forth.

1 Introduction to the Semantic Subtyping

Many recent type systems rely on a subtyping relation. Its definition generally depends
on the type algebra, and on its intended use. We can distinguish two main approaches
for defining subtyping: the syntactic approach and the semantic one. The syntactic
approach—by far the more used—consists in defining the subtyping relation by ax-
iomatising it in a formal system (a set of inductive or coinductive rules); in the semantic
approach (for instance, [AW93, Dam94]), instead, one starts with a model of the lan-
guage and an interpretation of types as subsets of the model, then defines the subtyping
relation as the inclusion of denoted sets, and, finally, when the relation is decidable,
derives a subtyping algorithm from the semantic definition.

The semantic approach has several advantages (see [CF05] for an overview) but it
is also more constraining. Finding an interpretation in which types can be interpreted
as subsets of a model may be a hard task. A solution to this problem was given by
Haruo Hosoya and Benjamin Pierce [HPO1, HosO1, HP0O3], who noticed that in order
to define subtyping all is needed is a set theoretic interpretation of types, not a model
of the terms. In particular, they propose to interpret a type as the set of all values that
have that type. So if we use ¥ to denote the set of all values, then we can define the
following set-theoretic interpretation for types [t],, = {v € V| F v :} which induces
the following subtyping relation:

s<pt <L [s], <y (1)
This works for Hosoya and Pierce because the set of values they consider can be de-

fined independently from the typing relation.! But in general in order to state when a
value has a given type (the “ v : #”” in the previous definition) one needs the subtyping

! Their values are XML documents, and they can be defined as regular trees. The typing relation,
then, becomes recognition of a regular tree language.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 1-20, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 G. Castagna

relation. This yields a circularity: we are building a model to define the subtyping re-
lation, and the definition of this model needs the subtyping relation. This circularity is
patent in both the examples we discuss below: in A-calculus (Section 2) values are A-
abstractions and to type them (in particular, to type applications that may occur in their
body) subtyping is needed; in mt-calculus (Section 3) the covariance and contravariance
of read-only and write-only channel types make the subtyping relation necessary to type
channels.

In order to avoid this circularity and still interpret types as set of values, we re-
sort to a bootstrapping technique. The general ideas of this technique are informally
exposed in [CF05], while the technical development can be found in [FCB02, Fri04].
For the aims of this article, the process of defining semantic subtyping can be roughly
summarised in the following steps:

1. Take a bunch of type constructors (e.g., —, X, ch(), ...) and extend the type alge-
bra with the following boolean combinators: union V, intersection A, and
negation —.

2. Give a set-theoretic model of the type algebra, namely define a function [], :
Types — P (D), for some domain D (where P(D) denotes the powerset of D).
In such a model, the combinators must be interpreted in a set-theoretic way (that
is, [sAt]p = [s]p Nt p, [sVtlp = [s]pUt]p. and [-t] 5 = D\ [t]p), and the
definition of the model must capture the essence of the type constructors.

There might be several models, and each of them induces a specific subtyping re-
lation on the type algebra. We only need to prove that there exists at least one model
and then pick one that we call the bootstrap model. If its associated interpretation
function is [, then it induces the following subtyping relation:

s<pt <L [s]sC[]s 2)

3. Now that we defined a subtyping relation for our types, find a subtyping algorithm
that decides (or semi-decides) the relation. This step is not mandatory but highly
advisable if we want to use our types in practise.

4. Now that we have a (hopefully) suitable subtyping relation available, we can focus
on the language itself, consider its typing rules, use the new subtyping relation to
type the terms of the language, and deduce I' -4 e : 7. In particular this means to use
in the subsumptionrule the bootstrap subtyping relation <z we defined in step 2.

5. The typing judgement for the language now allows us to define a new natural set-
theoretic interpretation of types, the one based on values [t],, ={ve V| Fgv:r},
and then define a “new” subtyping relation as in equation (1). This relation might
be different from <z we started from. However, if the definitions of the model,
of the language, and of the typing rules have been carefully chosen, then the two
subtyping relations coincide

s<gpt <= s<ypt
and this closes the circularity. Then, the rest of the story is standard (reduction re-
lation, subject reduction, type-checking algorithm, etc ...).

The accomplishment of this is process is far from being straightforward. In point 2 it
may be quite difficult to capture the semantics of the type constructors (e.g., it is quite

Semantic Subtyping: Challenges, Perspectives, and Open Problems 3

hard to define a set-theoretic semantics for arrow types); in point 3 defining a model may
go from tricky to impossible (e.g., because of bizarre interactions with recursive types);
point 4 may fail for the inability of devising a subtyping algorithm (cf. the subtyping
algorithm for Crt in [CNVO05]); finally the last step is the most critical one since it may
require a consistent rewriting of the language and/or of the typing rules to “close the
circle” ... if possible at all. We will give examples of all these problems in the rest of
this document.

In the next two sections we are going to show how to apply this process to A-like
and m-like calculi. The presentation will be sketchy and presuppose from the reader
some knowledge of the A-calculus, of the mt-calculus, and of their type systems. Also,
the calculi we are going to present are very simplified versions of the actual ones whose
detailed descriptions can be found in [FCB02] and [CNVO05], respectively.

2 Semantic A-Calculus: CDuce

As a first example of application of the semantic subtyping 5-steps technique, let us
take the A-calculus with products.

Step 1. The first step consists in taking some type constructors, in this case products
and arrows, and adding boolean combinators to them:

tu=0 |1 |t—ort|txt|t] Ve | tAt

where 0 and 1 correspond, respectively, to the empty and the universal types. For more
generality we consider also recursive types. Thus, our types are the regular trees gen-
erated by the grammar above and satisfying the standard contractivity condition that
every infinite branch has infinitely many occurrences of the x or of the — constructors
(this rules out meaningless expressions such as tA (t A (tA(...)))).

Step 2. The second step is, in this case, the hard one as it requires to define a set-
theoretic interpretation [],, : Types — P(D). But, how can we give a set theoretic
interpretation to the arrow type? The set theoretic intuition we have of + — s is that
it is the set of all functions (of our language) that when applied to a value of type ¢
either diverge or return a result of type s. If we interpret functions as binary relations
on D, then [t — s] is the set of binary relations in which if the first projection is in
(the interpretation of) ¢ then the second projection is in (the interpretation of) s, namely

P([¢] x [s]), where the overline denotes set complement.> However, setting [t — s] =

P([t] x [s]) is impossible since, for cardinality reasons, we cannot have P(D?) C D.
Note though, that we do not define the interpretation [] in order to formally state what
the syntactic types mean but, more simply, we define it in order to state how they are
related. Therefore, even if the interpretation does not capture the intended semantics of
types, all we need is that it captures the containment relation induced by this semantics.
That is, roughly, it suffices to our aims that the interpretation function satisfies

[h=si] Cle—s] < P(n]x[s]) € P[] x [s]) 3)

2 This is just one of the possible interpretations. See [CF05] for a discussion about the implica-
tions of such a choice and [Fri04] for examples of different interpretations.

4 G. Castagna

Note that Pr(X) C P¢(Y) if and only if P(X) C P(Y) (where P denotes the finite

powerset). Therefore, if we set [t — s] = P¢([r] x [s]), this interpretation satisfies (3).
In other words, we can use as bootstrap model B the least solution of the equation
X = X? + P¢(X?) and the following interpretation function? [] ; : Types — P(B):

[0lz=2 [1]z=3 [sVitlg = [slzVltl5 [sAt]lg = [slzN[tls
[Ftlg=B\[t]lg [sxtlg=[s]x[t] [t—slg=B([t]sx [s]5)

The model we have chosen can represent only finite graph functions, therefore it is not
rich enough to give semantics to a A-calculus (even the simply typed one). However
since this model satisfies equation (3), it is able to express the containment relation
induced by the semantic intuition we have of the type t — s (namely that it represents

P([¢] x [sI), which is all we need.

Step 3. We can use the definition of subtyping as given by equation (2) to deduce some
interesting relations: for instance, according to (2) the type (fj — s1) A (2 — s2) is a
subtype of (tj At2) — (s1As2), of (11 Va) — (s1V s2), of their intersection and, in
general, all these inclusions are strict.

Apart from these examples, the point of course is to devise an algorithm to decide
inclusion between any pair of types. Deciding subtyping for arbitrary types is equivalent
to decide whether a type is equivalent to (that is, it has the same interpretation as) 0:

s<gt=[slg Cltlg e IslagNltlg =2 < [sA-t] 3 =2 < sA-t =0.
By using the definition of B[], we can show that every type is equivalent to a finite
union where each summand is either of the form:
(A sx)AC N\ ~(sx0) @)

sxteP sxteN
or of the form

(As=DACA (=) ©)

s—teP s—teEN
Put s A ¢ in this form. Since it is a finite union, then it is equivalent to 0 if and only

if each summand is so. So the decision of s <g ¢ is reduced to the problem of decid-
ing whether the types in (4) and (5) are empty. The subtyping algorithm, then, has to
work coinductively, decomposing these problems into simpler subproblems where the
topmost type constructors have disappeared. In particular, in [Fri04] it is proved that the
type in (4) is equivalent to O if and only if for every N C N:

/\t/\ /\—-t' ~0 or /\s/\ /\—|s’ ~ 0; (6)
(rxs)eP (t'xs')eN’ (txs)eP (t'xs’)EN\W'

while the type in (5) is equal to zero if and only if there exists some (¢ — s’) € N such
that for every P’ C P:

t'A /\ -t | ~0 or /\ sA—s' | ~0. 7
(t—s)eP! (r—s)eP\P'

3 For the details of the definition of the interpretation in the presence of recursive types, the
reader is invited to consult [Fri04] and [FCBO2]. The construction is also outlined in [CF05].

Semantic Subtyping: Challenges, Perspectives, and Open Problems 5

By applying these decompositions the algorithm can decide the subtyping relation. Its
termination is ensured by the regularity and contractivity of the types.

Step 4. We have just defined a decidable subtyping relation for our types. We now want
to apply it to type the terms of a language. We do not present here a complete language:
the reader can find plenty of details in [CF05, FCB02]. Instead, we concentrate on the
definition and the typing of the terms that are the most interesting for the development
of this article, namely A-abstractions. These in the rest of this paper will have the form
M\iersi=lix e that is we index them by an intersection type. This index instructs the type
checker to verify that the abstraction is in the given intersection, namely, that it has all
the types composing it, as implemented by the following rule:

1=(Nim 1. 5= j= 1 (5—1))) 70
(Vi) Tyx:sibFgett;

(abstr)
T g MNesi=lix ¢ 1

To understand this rule consider, as a first approximation, the case for m = 0, that is,
when the type ¢ assigned to the function is exactly the index. The rule verifies that the
function has indeed all the s; — #; types: for every type s; — t; of the intersection it
checks that the body e has type #; under the assumption that the parameter x has type
s;. The rule actually is (and must be) more general since it allows the type checker to
infer for the function a type ¢ strictly smaller than the one at the index, since the rule
states that it is possible to subtract from the index any finite number of arrow types,
provided that ¢ remains non-empty.* This is necessary to step 5 of our process. But
before moving to the next step, note that the intersection of arrows can be used to type
overloaded functions. Indeed, our framework is compatible with overloading, since the
following containment

[(1V12) = (s1A82)] & [(11 = s1) A2 = 52)] ®)
is strict. So the semantic model authorises the language to define functions that return
different results (e.g. one in s1\sy and the other in s7\s;) according to whether their
argument is of type #; or ;. If the model had instead induced an equality between the
two types above then the function could not have different behaviours for different types
but should uniformly behave on them.?

Step 5. The last step consists in verifying whether the model of values induces that
same subtyping relation as the bootstrap one. This holds only if

Fgvit <= Wgv:t 9)

which holds true (and, together with the fact that no value has the empty type, makes the
two subtyping relations coincide) thanks to the fact that the (abstr) rule deduces negated
arrow types for lambda abstractions. Without it the difference of two arrow types (which

4 Equivalently, it states that we can deduce for a A-abstraction every non-empty type ¢ obtained
by intersecting the type indexing the abstraction with a finite number of negated arrow types
that do not already contain the index.

5 Overloading requires the addition of a type-case in the language. Without it intersection of
arrows can just be used to give more specific behaviour, as for A04d—0ddNEven—Eveny. which
is more precise than A/ x x.

6 G. Castagna

in general is non-empty) might be not inhabited by a value, since the only way to deduce
for an abstraction a negated arrow would be the subsumption rule. To put it otherwise,
without the negated arrows in (abstr) property (9) would fail since, for instance, both
b Mnt=Inty (x+3) : =(Bool — Bool), and I/ A" =11 x (x+3) : Bool — Bool would hold.

3 Semantic t-Calculus: Cnt

In this section we repeat the 5 steps process for the m-calculus.

Step 1. The types we are going to consider are the following ones

t u= O | 1| chf(t)| ch(t) | ch(t)| -t |tV | tAt
without any recursion. As customary ch(t) is the type of channels on which one can
expect to receive values of type ¢, ch(¢) is the type of channels on which one is allowed

to send values of type ¢, while ch(z) is the type of channels on which one can send and
expect to receive values of type 7.

Step 2. The set-theoretic intuition of the above types is that they denote sets of channels.
In turn a channel can be seen as a box that is tightly associated to the type of the objects
it can transport. So ch(t) will be the set of all boxes for objects of type 7, ch™(¢) the
set of all boxes in which one can put something of type ¢ while ch™(¢) will be the set
of boxes in which one expects to find something of type 7. This yields the following
interpretation

[ch(t)] = {c | cis a box for objects in [¢]}

[ch™(t)] = {c | c is a box for objects in [s] with s <t}

[eh(t)] = {c | ¢ is a box for objects in [¢] with s > }.
Given the above semantic interpretation, from the viewpoint of types all the boxes of
one given type ¢ are indistinguishable, because either they all belong to the interpretation
of one type or they all do not. This implies that the subtyping relation is insensitive to
the actual number of boxes of a given type. We can therefore assume that for every
equivalence class of types, there is only one such box, which may as well be identified
with [¢], so that the intended semantics of channel types will be

e ()] = {Is] | s <t} eh ()] = {Is] | s>} (10)

while the invariant channel type ch(¢) will be interpreted as the singleton {[¢]}. Of
course, there is a circularity in the definitions in (10), since the subtyping relation is not
defined, yet. So we rather use the following interpretations [ch™(¢)] = {[s] | [s] € [¢]},
[eh=(#)] = {[s] | [s] 2 [t]}, which require to have a domain that satisfies {[¢] | ¢ €
Types} C 9D. This is not straightforward but doable, as shown in [CNV05].

Step 3. As for the A-calculus we can use the definition of the model given by (10) to
deduce some interesting relations. First of all, the reader may have already noticed that
ch(t) = ch™(t) Ach (1)
thus, strictly speaking, the ch constructor is nothing but syntactic sugar for the inter-
section above (henceforth, we will no longer consider this constructor and concentrate
on the covariant and contravariant channel type constructors). Besides this relation, far

Semantic Subtyping: Challenges, Perspectives, and Open Problems 7

SAt

Fig. 1. Deciding atomicity Fig. 2. Some equations

more interesting relations can be deduced and, quite remarkably, in many case this can
be done graphically. Consider the definitions in (10): they tell us that the interpretation
of ch(t) is the set of the interpretations of all the types smaller than or equal to . As
such, it can be represented by the downward cone starting from ¢. Similarly, the upward
cone starting from ¢ represents ch™(¢). This illustrated in Figure 1 where the upward
cone B represents ch (s) and the downward cone C represents ch(¢). If we now pass
on Figure 2 we see that ch™(s) is the upward cone B+C and ch(r) is the upward cone
C+D. Their intersection is the cone C, that is the upward cone starting from the least
upper bound of s and ¢ which yields the following equation

ch (s)Ach (t) =ch (sV1). (11)

Similarly, note that the union of ch™(s) and ch™(t) is given by B+C+D and that this is
strictly contained in the upward cone starting from s A ¢, since the latter also contains
the region A, whence the strictness of the following containment:

ch ($)Vch(t) < ch (sAt). (12)

Actually, the difference of the two types in the above inequality is the region A which
represents ch'(sV 1) Ach (s At), from which we deduce
ch(sAt) =ch(s)Vch(t)V (chT(sVt)Ach (sAt)) .

We could continue to devise such equations, but the real challenge is to decide whether
two generic types are one subtype of the other. As in the case for A-calculus we can
reduce the problem of subtyping two types to the decision of the emptiness of a type (the
difference of the two types). If we put this type in disjunctive normal form, then it comes
to decide whether A;cpti A\ jey it =0, that is whether A;cpt; < V]_'EN t'. With the type
constructors specific to Crt this expands to A, ch (1) AN jey ch (83) <V jep ch () Vv
Viek ch (). Since intersections can always be pushed inside type constructors (we

saw itin (11) for ch™ types, the reader can easily check it for ch™), then we end up with
checking the following inequality:

8 G. Castagna

ch't)Ach () < \[ch'(d)v \[ch(15). (13)
heH kek
This is indeed the most difficult part of the job, since while in some cases it is easy
to decide the inclusion above (for instance, when 7, £ #; since then the right-hand side
is empty), in general, this requires checking whether a type is atomic, that is whether
its only proper subtype is the empty type (for sake of simplicity the reader can think
of the atomic types as the singletons of the type system®). The general case is treated
in [CNVO05], but to give an idea of the problem consider the equation above with only
two types s and 7 with r < s, and let us try to check if:
ch™(s)Ach™(t) < ch (s)Vch'(t) .
Once more, a graphic representation is quite useful. The situation is represented in
Figure 1 where the region A represents the left-hand side of the inequality, while the
region B+C is the right hand side. So to check the subtyping above we have to check
whether A is contained in B+C. At first sight these two regions looks completely disjoint,
but observe that they have at least two points in common, marked in bold in the figure
(they are respectively the types ch(s) and ch(r)). Now, the containment holds if the
region A does not contain any other type besides these two. This holds true if and only
if there is no other type between s and ¢, that is if and only if s\¢ (i.e. s A) is an atomic

type.
Step 4. The next step is to devise a m-calculus that fits the type system we have just
defined. Consider the dual of equation (12):7

ch*(s)V eh™(t) < ch*(s V1) (14)

and in particular the fact that the inclusion is strict. A suitable calculus must distinguish
the two types above. The type on the left contains either channels on which we will
always read s-objects or always read t-objects, while the type on the right contains
channels on which objects of type s or of type ¢+ may arrive interleaved. If we use a
channel with the left type and we can test the type of the first message we receive on
it, then we can safely assume that all the following messages will have the same type.
Clearly using in such a context a channel with the type on the right would yield a run-
time type error, so the two types are observationally different. This seems to suggest
that a suitable calculus should be able to test the types of the messages received on a
channel, which yields to the following definition of the calculus:

Channels o == x | ¢
Processes P = o) | Y olx:)P | Pi||Pa | (veé')P | P

The main difference with respect to the standard mt-calculus is that we have introduced
channel values, since a type-case must not be done on open terms. Thus, ¢’ is a physical
box that can transport objects of type ¢: channels are tightly connected to the type of
the objects they transport. Of course, restrictions are defined on channels, rather than

6 Nevertheless, notice that according to their definition, atomic types may be neither singletons
nor finite. For instance ch(0) is atomic, but in the model of values it is the set of all the
synchronisation channels; these are just token identifiers on a denumerable alphabet, thus the
type is denumerable as well.

7 To check this inequality turn Figure 2 upside down.

Semantic Subtyping: Challenges, Perspectives, and Open Problems 9

channel variables (since the latter could be never substituted). The type-case is then
performed by the following reduction rule

ci() | Bierci(x:6)P - — Pjlcy /] if ch(r) <1;

This is the usual m-calculus reduction with three further constraints: (i) synchronisation
takes place on channels (rather than on channel variables), (ii) it takes place only if the
message is a channel value (rather than a variable), and (iii) only if the type of the
message (which is ch(r)) matches the type ¢; of the formal parameter of the selected
branch of the summation. The last point is the one that implements the type-case. It is
quite easy to use intersection and negation types to force the various branches of the
summation to be mutually exclusive or to obey to a first match policy. We leave it as an
exercise to the reader.

As usual, the type system assigns a type to messages (i.e. channels) and checks
well-typing of processes. It is very compact and we report it below

(chan) (var) Prossssl s
Tk :ch(t) I'Ex:T(x) Cho:e oo
TP TP 'ep I'EP
1
rr ey " ppp TP repp, P
FFo:ch(t) Tox:ti- P I'=B:t Tho:ch{(t
t < Vigiti o chi(r) el ! (input) P ch(r) (output)
a0 TEYi0(x:)P I'Ea(B)

The rules are mostly self explaining. The only one that deserves some comments is
(input), which checks that the channel o can be used to read, and that each branch is
well-typed. Note the two side conditions of the rule: they respectively require that for
every t message arriving on o there must be at least one branch able to handle it (thus
t < Vg ti forces summands to implement exhaustive type-cases), and that for every
branch there must be some message that may select it (thus the ; At # 0 conditions
ensure the absence of dead branches). Also note that in the subsumption rule we have
used the subtyping relation induced by the bootstrap model (the one we outlined in the
previous step) and that in rule (new) the environment is the same in the premise and the
conclusion since we restrict channels and not variables.

Step 5. The last step consists in verifying whether the set of values induces the same
subtyping relation as the bootstrap model, which is indeed the case. Note that here the
only values are the channel constants and that they are typed just by two rules, (chan)
and (subsum). Note also that, contrary to the A-calculus, we do not need to explicit
consider in the typing rule intersections with negated types. This point will be discussed
in Section 4.6.

4 Challenges, Perspectives, and Open Problems

In the previous sections we gave a brief overview of the semantic subtyping approach
and a couple of instances of its application. Even though we have done drastic sim-
plifications to the calculi we have considered, this should have given a rough idea of

10 G. Castagna

the basic mechanisms and constitute a sufficient support to understand the challenges,
perspectives, and open problems we discuss next.

4.1 Atomic Types

We have shown that in order to decide the subtyping relation in Crt one must be able
to decide the atomicy of the types (more precisely, one must be able to decide whether
a type contains a finite number of atomic types and, if this is the case, to enumerate
them). Quite surprisingly the same problem appears in A-calculus (actually, in any se-
mantic subtyping based system) as soon as we try to extend it with polymorphic types.
Imagine that we embed our types with type variables X, Y, Then the “natural” (se-
mantic) extension of the subtyping relation is to quantify the interpretations over all
substitutions for the type variables:

n<n < vslnls/X]] C [tls/X]] - (15)
Consider now the following inequality (taken from [HFCO05]) where ¢ is a closed type
(£,X) < (t,71)V (X,1). (16)

We may need to check such an inequality when type-checking the body of a function
polymorphic in X where we apply a function whose domain is the type on the right to
an argument of the type on the left.

It is easy to see that this inequality holds if and only if # is atomic. If is not atomic,
then it has at least one non-empty proper subtype, and (15) does not hold when we
substitute this subtype for X. If instead ¢ is atomic, then for all X either t < X or ¢ <
—X: if the second case holds then X is contained in —¢, thus the left hand type of the
inequality is included in the first clause on the right hand type. If X does contain ¢, then
all the elements on the left except those in (z,#) are included by the first clause on the
right, and the elements in (¢,#) are included by the second clause.

Note that the example above does not use any fancy or powerful type constructor,
such arrows or channels: it only uses products and type variables. So the problem we
exposed is not a singularity but applies to all polymorphic extensions of semantic sub-
typing where, once more, deciding subtyping reduces to deciding whether some type is
atomic or not.

Since these atomic types pop out so frequently a first challenge is understanding
why this happens and therefore how much the semantic subtyping technique is tightened
to the decidability of atomicity. In particular, we may wonder whether it is reasonable
and possible to study systems in which atomic types are not denotable so that the set of
subtypes of a type is dense.

4.2 Polymorphic Types

The previous section shows that the atomic types problem appears both in Cnt and in
the study of polymorphism for CDuce. From a theoretical viewpoint this is not a real
problem: in the former case Castagna et al. [CNV0S5] show atomicity to be decidable,
which implies the decidability of the subtyping relation; in the functional case Hosoya
et al. [HFCOS5] argue that the subtyping relation based on the substitution interpretation
can be reduced to the satisfiability of a constraint system with negative constraints.

Semantic Subtyping: Challenges, Perspectives, and Open Problems 11

However, from a practical point of view the situation is way more problematic, probably
not in the case of Cr, since it is not intended for practical immediate applications, but
surely is in the case targeted by Hosoya et al. since the study performed there is intended
to be applied to programming languages, and no practical algorithm to solve this case
is known. For this reason in [HFCOS5] a different interpretation of polymorphic types
is given. Instead of interpreting type variables as “place holders” where to perform
substitutions, as stated by equation (15), they are considered as “marks” that indicate
the parametrised subparts of the values. The types are then interpreted as sets of marked
values (that is, usual values that are marked by type variables in the correspondence of
where these variables occur in the type), and are closed by mark erasure. Once more,
subtyping is then set containment (of mark-erasure closed sets of marked values) which
implies that the subtyping relation must either preserve the parametrisation (i.e. the
marks), or eliminate part of it in the supertype. More specifically, this requires that the
type variables in the supertype are present in the same position in the subtype. This
rules out critical cases such as the one of equation (16) which does not hold since no
occurrence of X in the type on the left of the equation corresponds to the X occurring
in the type on the right.

Now, the marking approach works because the only type constructor used in [HFCOS5]
is the product type, which is covariant. This is enough to model XML types, and the
polymorphism one obtains can be (and actually is) applied to the XDuce language.
However, it is still matter of research how to implement the marking approach in the
presence of contravariant type constructors: first and foremost in the presence of arrow
types, as this would yield the definition of a polymorphic version of CDuce; but also, it
would be interesting to study the marking approach in the presence of the contravariant
ch™ type constructor, to check how it combines with the checks of atomicity required by
the mix with the ch™ constructor, and see whether markings could suggests a solution
to avoid this check of atomicity.

On a different vein it would be interesting to investigate the relation between para-
metricity (as intended in [Rey83, ACC93, LMS93]) and the marking approach to poly-
morphism. According to parametricity, a function polymorphic (parametric) in a type
variable X cannot look at the elements of the argument which have type X, but must
return them unmodified. Thus with respect to those elements, the function is just a re-
arranging function and it behaves uniformly on them whatever the actual type of these
elements is. Marks have more or less the same usage and pinpoint those parts of the
argument that must be used unchanged to build the result (considering the substitu-
tion based definition of the subtyping relation would correspond to explore the seman-
tic properties of the type parameters, as the example of equation (16) clearly shows).
However, by the presence of “ad hoc” polymorphism (namely, the type-case construc-
tion evocated in Footnote 5 and discussed in Section 4.5) the polymorphic functions
in [HFCOS5] can look at the type of the parametric (i.e. marked) parts of the argument,
decompose it, and thus behave differently according to the actual type of the argument.
Therefore, while the marking approach and parametric polymorphism share the fact
that values of a variable type are never constructed, they differ in presenting a uniform
behaviour whatever the type instantiating a type variable is.

12 G. Castagna

Another direction that seems worth pursuing is to see if it is possible to recover part
of the substitution based polymorphic subtyping as stated by equation (15), especially
in Crt where the test of atomicity is already necessary because of the presence of the
covariant and contravariant cones.

Finally, one can explore a more programming language oriented approach and check
whether it is possible to define reasonable restrictions on the definition of polymorphic
functions (for instance by allowing polymorphism to appear only in top-level functions,
by forbidding a type variable to occur both in covariant and in contravariant position,
by constraining the use of type variables occurring in the result type of polymorphic
functions, etc.) so that the resulting language provides the programmer with sufficient
polymorphism for practical usage, while keeping it simple and manageable.

4.3 The Nature of Semantic Subtyping

The importance of atomic types also raises the question about the real nature of the
semantic subtyping, namely, is semantic subtyping just a different way to axiomatise
a subtyping relation that could be equivalently axiomatised by classic syntactic tech-
niques, or is it something different? If we just look at the CDuce case, then the right
answer seems to be the first one. As a matter of facts, we could have probably arrived to
define the same system without resorting to the bootstrapping technique and the seman-
tic interpretation, but just finding somehow the formulae (6) and (7) and distributing
them at the premises of some inference rules in which the types (4) and (5) are equated
to 0. Or alternatively we could have arrived to this system by looking at the axiomati-
sation for the positive fragment of the CDuce type system given in [DCFGMO02], and
trying to extend it to negation types.

But if we consider Cr, then we are no longer sure about the right answer. In Sec-
tion 3 we just hinted at the fact that checking subtyping involves checking whether some
types are atomic, but we did not give further details. The complete specification can be
found in Theorem 2.6 of [CNV05], and involves the enumeration of all the atomic types
of a finite set. Looking at that definition, it is unclear whether it can be syntactically ax-
iomatised, or defined with a classical deduction system. Since the relation is proved to
be decidable, then probably the answer is yes. But it is clear that finding such a solution
without resorting to semantic techniques would have been very hard, if not impossible.
And in any case one wonders whether in case of a non decidable relation this would be
possible at all.

As a matter of facts, we do not know whether the semantic subtyping approach is an
innovative approach that yields to the definition of brand new type systems or it is just a
new way to define old systems (or rather, systems that could be also defined in the good
old syntactic way). Whichever the answer is, it seems interesting trying to determine the
limits of the semantic subtyping approach, that is, its degree of freedom. More precisely,
the technique to “close the circle” introduced in [FCB02] and detailed in [CFO05] is
more general than the one presented here in the introduction. Instead of defining a
particular model it is possible to characterise a class of models which are those that
induce the same containment relation as the intended semantics (that is, that satisfy an
equation such as (10) but customised for the type constructors at issue). This relies on
the definition of an auxiliary function—called the extensional interpretation [FCB02]—

Semantic Subtyping: Challenges, Perspectives, and Open Problems 13

which fixes the intended semantics for the type constructors. So a more technical point
is to investigate whether and to which extent it is possible to systematise the definition of
the extensional interpretation. Should one start with a given model of values and refine
it, or rather try to find a model and then generalise it? And what are the limits of such
a definition? For instance, is it possible to define an extensional interpretation which
induces a containment where the inequality (14) is an equality? And more generally is
it possible to characterise, even roughly, the semantic properties that could be captured
by a model? Because, as we show in the next section, there are simple extensions of the
type systems we met so far for which a model does not exist.

4.4 Recursive Types and Models

As we said at the end of the introduction, to complete the 5 steps of the semantic sub-
typing approach is far from being trivial. One of the main obstacles, if not the main
one, may reside in the definition of a model. Not only that the model may be hard to
find, but also that sometimes it does not exist. A simple illustration of this can be given
in Cr. In the first step of the definition of Cr in Section 3 we carefully specified that
the types were not recursive: as pointed out in [CNVO0S5], if we allow recursion inside
channel types, then there does not exist any model. To see why, consider the following
recursive type:
t =intV (ch(t) Ach(int)) .

If we had a model, then either 7 = int or ¢ # int hold. Does t = int? Suppose it does,
then ch(t) A ch(int) = ch(int) and int = ¢ = intV ch(int), which is not true since
ch(int) is not contained in int. Therefore it must be 7 # int. According to our se-
mantics this implies ch(t) A ch(int) = 0, because they are interpreted as two distinct
singletons (whence the invariance of ch types). Thus t = int V 0 = int, contradiction.
The solution is to avoid recursion inside channel types, for instance by requiring that
on every infinite branch of a regular type there are only finitely many occurrences of
the channel type constructors. Nevertheless, this is puzzling since the natural extension
with recursion is inconsistent.

It is important to notice that this problem is not a singularity of Cm: it also appears in
CDuce as soon as we extend its type system by reference types, as explained in [CF05].
This raises the problem to understand what the non-existence of a model means. Does
it correspond to a limit of the semantic subtyping approach, a limit that some different
approach could overcome, or does it instead characterise some mathematical properties
of the semantics of the types, by reaching the limits that every semantic interpretation
of these types cannot overcome?

Quite remarkably the restriction on recursive types in Cnt can be removed, by mov-
ing to a local version of the calculus [Mer0O], where only the output capability of a
channel can be communicated. This can be straightforwardly obtained by restricting the
syntax of input processes so that they only use channel constants (thatis, >;c; " (x: ;) P;
instead of ¥,;; ou(x : #;)P;), which makes the type ch(¢) useless. Without this type, the
example at the beginning of this section cannot be constructed (by removing ch™(t) we
also remove ch(t) which is just syntactic sugar) and indeed it is possible build a model
of the types with full recursion. The absence of input channel types makes also the
decision algorithm considerably simpler since equation (13) becomes:

14 G. Castagna

ch(s) < \/ ch (%) (17)
kek

and it is quite easy to check (e.g. graphically) that (17) holds if and only if there exists
k € K such that f;, < 5. Last but not least, the types of the local version of of Cr are
enough to encode the type system of CDuce (this is shown in Section 4.7). However, as
we discuss in Section 4.6, new problems appear (rather, old problems reappear). So the
approach looks like too a short blanket, that if you pull it on one side uncovers other
parts and seems to reach the limits of the type system.

4.5 Type-Case and Type Annotations

Both CDuce and Crt make use of type-case constructions. In both cases the presence of
a type-case does not look strictly necessary to the development, but it is strongly sup-
ported, if not induced, by some semantic properties of the models. We already discussed
these points while presenting the two calculi.

For CDuce we argued that equation (8) and in particular the fact that the subtyping
inequality it induces

([1 V[2) — (S] /\SQ) < (tl — S1)/\([2 — 52) (18)

is in general strict, suggests the inclusion of overloaded function in the language to dis-
tinguish the two types: an overloaded function can have different behaviour for #; and
12, so it can belong to the right hand side, and not to the left hand side where all the
functions uniformly return results in the intersection of s; and s;. Of course, from a
strict mathematical point of view it is not necessary for a function to be able to distin-
guish on the type of their argument in order to be in the right hand side but not in the
left one: it suffices that it takes, say, a single point of #; into s1 /s3 to be in the difference
of the two types. If from a mathematical viewpoint this is the simplest solution from
a programming language point of view, this is not the easy way. Indeed we want to
be able to program this function (as long as we want that the model based on values
induces the same subtyping relation as the bootstrap model). Now imagine that #; and
t are function types. Then a function which would have a different behaviour on just
one point could not be programmed by a simple equality check on the input (such as “if
the input is the point at issue then return a point in sy /s, otherwise return something in
52”) as we cannot check equality on functions: the only thing that we can do is to apply
them. This would imply a non trivial construction of classes of functions which have a
distinguished behaviour on some specific points. It may be the case that such construc-
tion does not result technically very difficult (even if the presence of recursive types
suggests the contrary). However constructing it would not be enough since we should
also type-check it and, in particular, to prove that the function is typed by the difference
of the two types in (18): this looks as an harder task. From a programming language per-
spective the easy mathematical solution is the difficult one, while the easy solution, that
is the introduction of type-cases and of overloaded functions, has a hard mathematical
sense (actually some researchers consider it as a mathematical non-sense).

For Cr we raised a similar argument about the strictness of
ch™(s)V ch™(t) < ch'(sV1)

Semantic Subtyping: Challenges, Perspectives, and Open Problems 15

The presence of a type-case in the processes is not strictly necessary to the existence of
the model (values do not involve processes but just messages) but it makes the two types
observationally distinguishable. One could exclude the type-case from the language, but
then we would have a too restrictive subtyping relation because it would not let values
in the right type to be used where values of the left type are expected, even if the two
types would not be operationally distinguishable: it would be better in that case to have
the equality hold (as in the system defined by Hennessy and Riely [HR0O2] where no
type-case primitive is present).

These observations make us wonder how much the semantic subtyping approach
is bound to the presence of a type-case. We also see that if for instance in CDuce we
try to provide a language without overloading, the formal treatment becomes far more
difficult (see Section 5.6 of [Fri04]). Therefore one may also wonder whether the seman-
tic subtyping approach is unfit to deal with languages that do not include a type case.
Also, since we have a type-case, then we annotated explicitly by their type some values:
A-abstractions in CDuce and channel constants in Crt. One may wonder if any form of
partial type reconstruction is possible®, and reformulate the previous question as whether
the semantic subtyping approach is compatible with any form of type reconstruction.

The annotations on the A-abstractions raise even deeper questions. Indeed all the
machinery on A-calculus works because we added these explicit annotations. The point
is that annotations and abstractions constitute an indissociable whole, since in the pres-
ence of a type-case the annotations observably change the semantics of the abstrac-
tions: using two different annotations on the same A-abstraction yields two different
behaviours of the program they are used in. For instance A04d—~0ddAEven—Even . , wi]|
match a type-case on Odd — Odd while A/~ x x will not. We are thus deeply chang-
ing the semantics of the elements of a function space, or at least of the A-terms as usu-
ally intended. This raises a question which is tighten to—but much deeper than—the
one raised by Section 4.3, namely which is the mathematical or logical meaning of the
system of CDuce, and actually, is there any? A first partial answer to this question has
been answered by Dezani et al. [DCFGMO02] who showed that the subtyping relation
induced by the model of Section 2 restricted to its positive part (that is arrows, unions,
intersections but no negations) coincides with the relevant entailment of the B logic
(defined 30 years before). However, whether analogous characterisations of the system
with negation exist is still an open question. This seems a much more difficult task since
the presence of negation requires deep modifications in the semantics of functions and
in their typing. Thus, it still seems unclear whether the semantic subtyping technique
for A-calculus is just a syntactic hack that makes all the machinery work, or it hides
some underlying mathematical feature we still do not understand.

4.6 Language with Enough Points and Deduction of Negations

We have seen in step 4 of Section 2, that lambda abstractions are typed in an unorthodox
way, since the rule (abstr) can subtract any finite number of arrow types as long as the
type is non-empty. In step 5 of the same section we justified this rule by the fact that
we wanted a language that provided enough values to inhabit all the non-empty types.

8 Full type reconstruction for CDuce is undecidable, since it already is undecidable for the A-
calculus with intersection types where typability is equivalent to strong normalizability.

16 G. Castagna

This property is important for two reasons: (i) if the bootstrap model and the model of
values induce the same subtyping relation, then it is possible to consider types as set
of values, which is an easier concept to reason on (at least for a programmer) than the
bootstrap model, and (ii) if two different types cannot be distinguished by a value than
we would have too a constraining type system, since it would forbid to interchange the
values of the two types even though the types are operationally indistinguishable.

The reader may have noticed that we do not have this problem in Cr. Indeed given
a value, that is a channel ¢, it is possible to type it with the negation of all channel types
that cannot be deduced for it. In particular we can deduce for ¢’ the types =ch™(s;) and
—ch™(s2) forall s1 ¢ and s, £ ¢, and this is simply obtained by subsumption, since it is
easy to verify that all these types are supertypes of the minimum type deduced for ¢’ that
is ch™(t) Ach(t). For instance if s; then ch (1) < —ch™(s1) and so is the intersection.

But subsumption does not work in the case of CDuce: to deduce by subsumption
that A= x (x4 3) : =(Bool — Bool) one should have Int — Int < =(Bool — Bool),
which holds if and only if Int — Int A Bool — Bool is empty, which is not since it
contains the overloaded functions of the corresponding type.

Interestingly, the same problem pops up again if we consider the local version of
Cmt. In the absence of covariant channels it is no longer possible to use the same rules to
deduce that ¢’ has type ~ch™(s) for s € 7. Indeed we can only deduce that ¢’ : ch(¢) and
this is not a subtype of =ch(s) (since ch™(t) A ch™(s) is non-empty: it contains ¢*¥'),
thus subsumption does not apply and we have to modify the rule for channels, so that is
uses the same techniques as (abstr):

ti Lt

T ch(t)Aach (1) A... Ach™ (1)
Having rules of this form is quite problematic. First because one loses the simplicity
and intuitiveness of the approach, but more importantly because the system no longer
satisfies the minimum typing property, which is crucial for the existence of a typing
algorithm. The point is that the minimum “type” of an abstraction is the intersection
of the type at its index with all the negated arrow types that can be deduced for it.
But this is not a type since it is an infinite intersection, while in our type system only
finite intersections are admitted.” In order to recover the minimum typing property and
define a type algorithm, Alain Frisch [FriO4] introduces some syntactic objects, called
schemas, that represent in a finite way the infinite intersection above, but this does not
allow the system to recover simplicity and makes it lose its set-theoretic interpretation.

Here it is, thus, yet another problematic behaviour shared between CDuce and Cr.
So once more the question is whether this problem is a limitation of semantic subtyping
or it is implicit in the usage of negation types. And as it can be “solved” in the case case
of Cr by considering the full system instead of just the local version, is it possible to
find similar (and meaningful) solutions in other cases (notably for CDuce)?

(chan)

9 Of course the problem could be solved by annotating values (channels or A-abstractions) also
with negated types and considering it as the minimum type of the value. But it seems to us an
aberration to precisely state all the types a term does not have, especially from a programming
point of view, since it would require the programmer to forecast all the possible usages in
which a function must not have some type. In any case in the perspective of type reconstruction
evocated in the previous section this is a problem that must be tackled.

Semantic Subtyping: Challenges, Perspectives, and Open Problems 17

Finally, it would be interesting to check whether the semantic subtyping type system
could be used to define a denotational semantics of the language by relating the semantic
of an expression with the set of its types and (since our type system is closed by finite
intersections and subsumption) build a filter model [BCD83].

4.7 The Relation Between Crt and CDuce

There exist several encodings of the A-calculus into the m-calculus (see part VI of
[SWO02] for several examples), so it seems interesting to study whether the encoding of
CDuce into Cm is also possible. In particular we would like to use a continuation pass-
ing style encoding as proposed in Milner’s seminal work [Mil92] according to which a
A-abstraction is encoded as a (process with a free) channel that expects two messages,
the argument to which the function must be applied and a channel on which to return
the result of the application. Of course, in the CDuce/Cr case a translation would be
interesting only if it preserved the properties of the type system, in particular the sub-
typing relation. In other terms, we want that our translation { } : Typescguce — TYP€Scr
satisfies the property r = 0 if and only if {¢} = 0 (or equivalently s < ¢ iff {s} < {r}).

Such an encoding can be found in a working draft we have been writing with Mar-
iangiola Dezani and Daniele Varacca [CDVO05]. The work presented there starts from
the observation that the natural candidate for such an encoding, namely the typed trans-
lation used in [SWO02] for AV~ (the simply-typed call-by-value A-calculus) and defined
as{s—t}=ch ({s} xch ({t})) does not work for CDuce/Crn (from now on we will
omit the inner mapping parentheses and write ch (s X ch™(¢)) instead). This can be seen
by considering that the following equality holds in CDuce

s—(tAu) = (s—=1)A(s—u) (19)

while if we apply the encoding above, the translation of the left hand side is a subtype
of the translation of the right hand side but not viceversa. Once more, this is due to
the strictness of some inequality, since the translation of the codomain of the left hand
side ch (¢t A u), contains the translation of the codomains of the right hand side ch(¢) V
ch™(u) (use equation (11) and distribute union over product) but not viceversa.

So the idea of [CDVO05] is to translate s — 7 as ch (s x ch(t)) where ch(z) is a type
that is (i) contravariant (since it must preserve the covariance of arrow codomains), (i)
satisfies ch(r Au) = cht) V chMu) (so that it preserves equation (19)) and (iii) is a
supertype of ch™(t) (since we must be able to pass on it the channel on which the result
of the function is to be returned).

Properties (i) and (ii) can be satisfied by adding a double negation as for ~ch™(—t):
the double negation preserves the contravariance of ch~ while the inner negation by
De Morgan’s laws yields the distributivity of the union. For (iii) notice that ~ch™(—¢) \
ch™(t) = ch(1), so it suffices to add the missing point by defining ch(t) = ~ch™(—t)V
ch(1). With such a definition the translation ch (s x ch™(r)) has the wanted properties.
Actually, in [CDVO05] it is proved that the three conditions above are necessary and
sufficient to make the translation work, which induces a class of possible translations
parametric in the definition of ch* (see [CDVO05] for a characterisation of the choices
for ch*). ch(¢) is a supertype of ch () but the latter is also the greatest channel type
contained in ¢h*(r). So there is gap between ch(r) and ch(¢) which constitutes the def-
inition space of ¢h’(r). What is the meaning of this gap, that is of ch*(¢) \ ch(r)? We do

18 G. Castagna

not know, but it is surely worth of studying, since it has important consequences also in
the interpretation of terms. The translation of terms is still work in progress, but we want
here hint at our working hypotheses since they outline the importance of ch(t) \ ch(r).
We want to give a typed translation of terms, where the translation of a term e of type ¢ is
a process with only one unrestricted channel o of type ch({{¢}}) (intuitively, this is the
channel on which the process writes the result of). We note this translation as {e}q.
Consider the rule (abstr) for functions and note that the body of an abstraction is typed
several times under several assumptions. If we want to be able to prove that the trans-
lation preserves typing, then the translation must mimic this multiple typing. This can
be done in Cx by using a summation, and thus by translating ANi€/Si~ix.¢ into a process
that uses the unrestricted channel ot : ch ({Ajersi — 4 }) = ch(ch (Vier(si X ch1))))
as follows:

{nersi—iix.elho = (VY E D) (o f) || Ve fx i ch (1) {e})

Unfortunately, the translation above is not correct since it is not exhaustive. More pre-
cisely, it does not cover the cases in which the second argument is in ch(#;) \ ch™(1;): to
type { e} the result channel r must have type ch(#;) (since the only types the CDuce
type system deduces for e are the #;°s), but the encoding of arrow types uses chx(t,-) in sec-
ond position. Thus, it seems important to understand what the difference above means.
Is it related to the negation of arrow types in the (abstr) rule? Note that in this section
we worked on the local version of Cr, so we have recursive types (Section 4.4) but also
negated channels in the (chan) typing rule (Section 4.6). If for local Ct we use the rule
without negations then c#(t) \ ch™(t) = @, so the encoding above works but we no longer
have a consistent type system. We find again that our blanket is too short to cover all the
cases. Is this yet another characterisation of some limits of the approach? Does it just
mean that Milner’s translation is unfit to model overloading? Or does it instead suggest
that the encoding of CDuce into Cr has not a lot of sense and that we had better study
how to integrate CDuce and Cr in order to define a concurrent version of CDuce?

4.8 Dependent Types

As a final research direction for the semantic subtyping we want to hint at the research
on dependent types. Dependent types raise quite naturally in type systems for the -
calculus (e.g. [YHOO, Yos04]), so it seems a natural evolution of the study of Crt. Also,
dependent types in the m-calculus are used to check the correctness of cryptographic
protocols (see the research started by Gordon and Jeffrey [GJO1]) and unions, intersec-
tions, and negations of types look very promising to express properties of programs.
Thus, it may be worth of study the definition of an extension of Gordon an Jeffrey sys-
tems with semantic subtyping, especially in the light of the connection of the latter with
XML and the use of this in protocols for webservices.

Also quite interesting would be to study the extension of first order dependent type
theory AIT [HHP93]. As far as we know, all the approaches to add subtyping to AIl
are quite syntactic, since the subtyping relation is defined on B, normal forms (see
for instance [AC96] or, for an earlier proposal, [Pfe93]). Even more advanced subtype
systems, such as [CCO1, Che99], still relay on syntactic properties such as the strong
normalisation of the B,-reduction, since the subtyping rules essentially mimic the [3;-
reduction procedure. It would then be interesting to check whether the semantic sub-

Semantic Subtyping: Challenges, Perspectives, and Open Problems 19

typing approach yields a more semantic characterisation of the subtyping relation for
dependent types.

5 Conclusion

The goal of this article was twofold: (i) to give an overview of the semantic subtyping
approach and an apercu of its generality by applying it both to sequential and concur-
rent systems and (i) to show the new questions it raises. Indeed we were much more
interested in asking questions than giving answers, and it is in this perspective that this
paper was written. Some of the questions we raised are surely trivial or nonsensical,
some others will probably soon result as such, but we do hope that at least one among
them will have touched some interesting mathematical problem being worth of pursu-
ing. In any case we hope to have interested the reader in this approach.

Acknowledgements. Most of this work was prepared while visiting Microsoft Re-
search in Cambridge and it greatly benefited of the stimulating and friendly environ-
ment that I enjoyed during my stay, a clear break with respect to my current situation.
In particular, I want to warmly thank Nick Benton (Section 4.5 results from a long dis-
cussion I had with him), Gavin Bierman, Luca Cardelli, and Andy Gordon. I want also
to thank Mario Coppo, Mariangiola Dezani, and Daniele Varacca for their suggestions
on various versions of this work. All my gratitude to Microsoft Research and all its
personnel for their warm hospitality.

References

[AC96] D. Aspinall and A. Compagnoni. Subtyping dependent types. In /1th Ann. Symp.
on Logic in Computer Science, pages 86-97, 1996.

[ACC93] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism. The-
oretical Computer Science, 21:9-58, 1993. Special issue in honour of Corrado
Bohm.

[APPI1] Martin Abadi, Benjamin Pierce, and Gordon Plotkin. Faithful ideal models for

recursive polymorphic types. International Journal of Foundations of Computer
Science, 2(1):1-21, March 1991. Summary in Fourth Annual Symposium on
Logic in Computer Science, June, 1989.

[AW93] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and
type inference. In Proceedings of the Seventh ACM Conference on Functional
Programming and Computer Architecture, pages 31-41, Copenhagen, Denmark,

June 93.

[BCD83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic, 48(4):931-940,
1983.

[CCO1] G. Castagna and G. Chen. Dependent types with subtyping and late-bound over-
loading. Information and Computation, 168(1):1-67, 2001.

[CDVO05] G. Castagna, M. Dezani, and D. Varacca. Encoding CDuce into Crt. Working
draft, February 2005.

[CF05] G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In

Proceedings of PPDP 05, the 7th ACM SIGPLAN International Symposium on
Principles and Practice of Declarative Programming, Lisboa, Portugal, 2005.
ACM Press. Joint ICALP-PPDP keynote talk.

20 G. Castagna

[Che99]

[CNV05]

[Dam94]

[DCFGM02]

[FCB02]

[Fri04]

[GJO1]

[HFCO5]

[HHP93]
[HosO1]

[HPO1]

[HPO3]
[HRO2]

[LMS93]

[Mer00]
[Mil92]
[Pfe93]

[Rey83]

[SW02]
[YHOO0]

[Yos04]

G. Chen. Dependent type system with subtyping. Journal of Computer Science
and Technology, 14(1), 1999.

G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the m-
calculus. In LICS ’05, 20th Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, 2005.

F. Damm. Subtyping with union types, intersection types and recursive types II.
Research Report 816, IRISA, 1994.

M. Dezani-Ciancaglini, A. Frisch, E. Giovannetti, and Y. Motohama. The rele-
vance of semantic subtyping. In Intersection Types and Related Systems. Elec-
tronic Notes in Theoretical Computer Science 70(1), 2002.

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic Subtyp-
ing. In Proceedings, Seventeenth Annual IEEE Symposium on Logic in Computer
Science, pages 137-146. IEEE Computer Society Press, 2002.

Alain Frisch. Théorie, conception et réalisation d’un langage de programmation
fonctionnel adapté a XML. PhD thesis, Université Paris 7, December 2004.

A. Gordon and A. Jeftrey. Authenticity by typing for security protocols. In
CSFW 2001: 14th IEEE Computer Security Foundations Workshop, pages 145—
159, 2001.

H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for XML.
In POPL 05, 32nd ACM Symposium on Principles of Programming Languages.
ACM Press, 2005.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143-184, January 1993.

Haruo Hosoya. Regular Expression Types for XML. PhD thesis, The University
of Tokyo, 2001.

Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern matching for
XML. In The 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2001.

H. Hosoya and B. Pierce. XDuce: A typed XML processing language. ACM
Transactions on Internet Technology, 3(2):117-148, 2003.

M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82-120, 2002.

Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. The genericity theorem
and parametricity in the polymorphic A-calculus. Theor. Comput. Sci., 121(1-
2):323-349, 1993.

Massimo Merro. Locality in the pi-calculus and applications to distributed ob-
Jjects. PhD thesis, Ecole des Mines de Paris, Nice, France, 2000.

R. Milner. Functions as processes. Mathematical Structures in Computer Science,
2(2):119-141, 1992.

F. Pfenning. Refinement types for logical frameworks. In Informal Proceedings
of the 1993 Workshop on Types for Proofs and Programs, May 1993.

J.C. Reynolds. Types, abstractions and parametric polymorphism. In R.E.A.
Mason, editor, Information Processing '83, pages 513-523. North-Holland, 1983.
D. Sangiorgi and D. Walker. The nt-calculus. Cambridge University Press, 2002.
N. Yoshida and M. Hennessy. Assigning types to processes. In Proc. of the 15th
IEEE Symposium on Logic in Computer Science, pages 334-348, 2000.

Nobuko Yoshida. Channel dependent types for higher-order mobile processes.
In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 147-160. ACM Press, 2004.

Biological Systems as Reactive Systems

Luca Cardelli
Microsoft Research

Systems Biology is a new discipline aiming to understand the behavior of bi-
ological systems as it results from the (non-trivial, ”"emergent”) interaction of
biological components. We discuss some biological networks that are charac-
terized by simple components, but by complex interactions. The components
are separately described in stochastic pi-calculus, which is a ”programming lan-
guage” that should scale up to description of large systems. The components
are then wired together, and their interactions are studied by stochastic simu-
lation. Subtle and unexpected behavior emerges even from simple circuits, and
yet stable behavior emerges too, giving some hints about what may be critical
and what may be irrelevant in the organization of biological networks

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, p. 21, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Mobile Agents Computing:
Security Issues and Algorithmic Solutions

Nicola Santoro

School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Abstract. The use of mobile agents is becoming increasingly popular
when computing in networked environments, ranging from Internet to
the Data Grid, both as a theoretical computational paradigm and as a
system-supported programming platform.

In networked systems that support autonomous mobile agents, the
main theoretical concern is how to develop efficient agent-based system
protocols; that is, to design protocols that will allow a team of identical
simple agents to cooperatively perform (possibly complex) system tasks.

The computational problems related to these operations are definitely
non trivial, and a great deal of theoretical research is devoted to the study
of conditions for the solvability of these problems and to the discovery
of efficient algorithmic solutions.

At a practical level, in these environments, security is the most press-
ing concern, and possibly the most difficult to address. Actually, even
the most basic security issues, in spite of their practical urgency and of
the amount of effort, must still be effectively addressed.

Among the severe security threats faced in distributed mobile com-
puting environments, two are particularly troublesome: harmful agent
(that is, the presence of malicious mobile processes), and harmful host
(that is, the presence at a network site of harmful stationary processes).

The former problem is particularly acute in unregulated non-cooperative
settings such as Internet (e.g., e-mail transmitted viruses). The latter not
only exists in those settings, but also in environments with regulated ac-
cess and where agents cooperate towards common goals (e.g., sharing of
resources or distribution of a computation on the Grid). In fact, a local
(hardware or software) failure might render a host harmful.

In this talk I will concentrate on two security problems, one for each
type: locating a black hole, and capturing an intruder; 1 will describe
the recent algorithmic solutions and remaining open questions for both
problems.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, p. 22, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Efficient Algorithms for Detecting Regular
Point Configurations

Luzi Anderegg', Mark Cieliebak', and Giuseppe Prencipe?

' ETH Zurich
{anderegg, cieliebak}@inf.ethz.ch
2 Universita di Pisa
prencipe@di.unipi.it

Abstract. A set of n points in the plane is in equiangular configuration
if there exist a center and an ordering of the points such that the angle
of each two adjacent points w.r.t. the center is 22" i.e., if all angles
between adjacent points are equal. We show that there is at most one
center of equiangularity, and we give a linear time algorithm that de-
cides whether a given point set is in equiangular configuration, and if so,
the algorithm outputs the center. A generalization of equiangularity is
o-angularity, where we are given a string o of n angles and we ask for a
center such that the sequence of angles between adjacent points is . We
show that o-angular configurations can be detected in time O(n’logn).

Keywords: Weber point, equiangularity, o-angularity, design of algo-
rithms, computational geometry.

1 Introduction

We study how to identify geometric configurations that are in a sense gener-
alizations of stars: a set of n distinct points P in the plane is in equiangular
configuration if there exists a point ¢ ¢ P — the center of equiangularity — and
an ordering of the points such that each two adjacent points form an angle of
% w.r.t. ¢ (see Figure 1(a)).

Obviously, if all points have the same distance from the center, then they form
a regular star. Note that we exclude the special case that any of the given points
is at center c. Furthermore, observe that the number of points in equiangular
configurations can be odd or even, and that any set of two points is always in
equiangular configuration. In the remainder of this paper, we will consider only
point sets with at least three points.

There is a strong connection between equiangular configurations and Weber
points, which are defined as follows: a point w is a Weber point of point set P if
it minimizes } . p [p — x| over all points z in the plane, where [p — x| denotes
the Euclidean distance between p and z [8]. Hence, a Weber point minimizes
the sum of all distances between itself and all points in P. The Weber point for
an arbitrary point set is unique except for the case of an even number of points
which are all on a line [3]. We will show that the center of equiangularity, if it

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 23-35, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

24 L. Anderegg, M. Cieliebak, and G. Prencipe

(a)

Fig. 1. Example of (a) equiangular configuration with n = 5; (b) c-angular config-
uration with n = 9, where o = (31°,45°,14°,31°,49.5°,68.5°,76°,31°,14°); and (c)
biangular configuration with n = 8.

exists, is a Weber point; thus, there is at most one center of equiangularity for
n > 3 points that are not on a line. Obviously, we could check easily whether a
given set of points is in equiangular configuration if we could find their Weber
point. Unfortunately, no efficient algorithms are known to find the Weber point
in general; even worse, it can be shown that the Weber point cannot even be
computed using radicals [2]. Hence, other algorithms are necessary, which we
will develop throughout this paper. The algorithm we will present for identifying
equiangularity has an interesting implication on Weber points: If n points are
in equiangular configuration, then we can use our algorithm to compute their
Weber point. This is rather surprising, since such results are known for only few
other patterns (e.g. all points are on a line), whereas this does not hold in general
for many easy—looking geometric pattern: for instance, it has been shown that
it is hard to find the Weber point even if all points are on a circle [5].

A generalization of equiangularity is o-angularity, where we are given a string
o = (01,...,0,) of n angles and we ask whether there exists a center ¢ and
an ordering of the points such that the sequence of angles between each two
adjacent points w.r.t. the center is o (see Figure 1(c)).Observe that the center of
o-angularity is not necessary unique. Obviously, equiangularity is equivalent to
c-angularity with ¢ = (%, %, cey %). The case of two alternating angles
aand G, ie., o= (o, 0, q,...,0), is referred to as biangular (see Figure 1(c)).

o-angular configurations have been applied successfully in robotics, namely
in solving the GATHERING PROBLEM, which — informally — can be defined as
follows: given is a set of autonomous mobile robots that cannot communicate
at all and that can only observe the positions of all other robots in the plane.
The task is to gather the robots at an arbitrary point in the plane that is
not fixed in advance. One of the main difficulties of this problem is to deal
with configurations that are totally symmetric, for instance where the robots’
positions form a regular! n-gon. Recently, an algorithm solving the GATHERING
PROBLEM has been proposed which uses — among other techniques — the center

! Note that a regular n-gon is a special case of equiangular configuration.

Efficient Algorithms for Detecting Regular Point Configurations 25

of equiangularity or biangularity to gather the robots there [4]. Hence, efficient
algorithms are needed to find the centers of such configurations.

In this paper, we present algorithms that decide whether a point set is in
o-angular configuration, for a given string o, and if so, the algorithms output a
corresponding center. To our knowledge, there is no treatment of equiangularity
in the vast amount of literature on computational geometry. Only very distantly
related, if at all, are for instance star-shaped polygons and star—graphs [7].

For the general case of o-angularity, we will present in Section 2 an algorithm
with running time O(n* logn). For the special cases of biangular and equiangular
configurations, this algorithm runs in cubic time, if the two angles are given. In
Section 3, we will give another algorithm that allows to detect equiangular con-
figurations even in linear time. All algorithms are straightforward to implement.

2 o-Angular Configurations

In this section, we present an algorithm that detects o-angularity in running
time O(n*logn), and we show how to simplify this algorithm for biangular and
equiangular configurations, yielding running time O(n?). Our algorithms rely on
the notion of Thales circles, which we introduce below.

2.1 Thales Circles

Given two points p and ¢ and an angle 0° < « < 180°, a circle C is a Thales
circle of angle o for p and q if p and ¢ are on C, and there is a point x on C such
that <((p, z,q) = «, where <((p, z, q) denotes the angle between p and ¢ w.r.t. .
In the following we will denote such a circle also by Cpq. An example of a Thales
circle?can be found in Figure 2(a). It is well-known from basic geometry that
all angles on a circle arc are identical, i.e., given a Thales circle C of angle a for
points p and ¢ such that <(p, x, ¢) = a for some point = on C, then <(p, 2’,q) = «
for every point 2’ on the same circle arc of C where x is.

Lemma 1. Given two points p and q and an angle 0° < a < 180°, the Thales
circles of angle a for p and q can be constructed in constant time.

The lemma can be proven using basic geometry.

Observe that for two points p and ¢, there is exactly one Thales circle of
angle 90°, and there are two Thales circles of angle a # 90°. However, in the
remainder of this paper we will often speak of “the Thales circle”, since it will
be clear from the context which of the two Thales circles we refer to.

The connection between Thales circles and o-angular configurations is the
following (see Figure 2(b)): Assume that a point set P is in o-angular configu-
ration with center ¢, for some string of angles o = (01,...,0,). For two points
p,q € P, let « be the angle between p and ¢ w.r.t. ¢, i.e., « = <(p, ¢, q). Then

2 The name ”Thales circle” refers to Thales of Miletus, who was one of the first to
show that all angles in a semi-circle have 90°.

26 L. Anderegg, M. Cieliebak, and G. Prencipe

Fig. 2. (a) A Thales circle of angle @ < 90°. (b) Cpgp, is Thales circle for p3 and po
with o = o9 + 01 + 02, and Cp,pe is Thales circle for p7 and pg with o = o7.

a = Y7 _, o for two appropriate indices i, (taken modulo n). Let C be the
circle through p, g and ¢. Then C is a Thales circle of angle « for p and ¢. Since
this holds for any pair of points from P - with appropriate angles - this yields
the following:

Observation 1. The center of o-angularity must lie in the intersection of Thales
circles for any two points from P of appropriate angle.

We will use this observation in our algorithms to find candidates for the
center of g-angularity.

2.2 Algorithm for o-Angular Configurations

We now present an algorithm that detects o-angular configurations in time
O(n*logn); before, we observe basic properties of o-angular configurations that
we apply in our algorithm.

Let o be a string of angles and P be a point set that is in o-angular con-
figuration with center c. First, observe that the angles in ¢ must sum up to
360°; thus, there can be at most one angle in ¢ that is larger than 180°. Let
Qmaz De the maximum angle in o. Then the following holds (cf. Figure 3): If
Qmae > 180°, then center c is outside the convex hull of P; if aa. = 180° and
there is no other angle of 180° in o, then center ¢ is on the convex hull; if there
are two angles of 180° in o, then all other angles in ¢ are of 0°, and the points in
P are on a line; and, finally, if a4, < 180°, then center c is strictly inside the
convex hull of P. Furthermore, observe for the last case — where c is inside the
convex hull — that the ordering of the points in P that yields o, if restricted to
the points on the convex hull of P, corresponds to the ordering of these points
along the convex hull.

Our algorithm to detect o-angularity will distinguish these four cases. For
each case, the algorithm will generate few candidate points that might be a
center of og-angularity. Then we test for each candidate ¢ whether it is indeed a
center as follows: We compute the angle between a fixed point on the convex hull,
say x, and every other point p € P w.r.t. c. We sort these angles and compute

Efficient Algorithms for Detecting Regular Point Configurations 27

Fig. 3. o-angular configurations with (a) amaez > 180°, (b) @maz unique angle of 180°,
and (¢) @mae < 180° (dashed lines show the convex hull of {p1,...,pn}).

sequence T by subtracting each angle from its successor. Then candidate ¢ is a
center of g-angularity if sequence 7 or its reverse is a cyclic shift of o. This test
requires time O(nlogn).

Theorem 1. Given a point set P of n > 3 distinct points in the plane and a
string o = (01,...,0,) of n angles with Y, 0; = 360°, there is an algorithm
with running time O(n*logn) that decides whether the points are in o-angular
configuration, and if so, the algorithm outputs a center of o-angularity.

Proof. The algorithm consists of different routines, depending on whether the
largest angle in ¢ is greater than, equal to, or less than 180°. We present the
algorithm for the case that all angles are less than 180°. The other cases are
solved similarly.

Case All angles less than 180°. In this case, a center of g-angularity, if it exists,
is strictly inside the convex hull of P (see Figure 3(c)). Moreover, if we fix three
points from P and compute the Thales circles for these points with appropriate
angles, then the center of equiangularity lies in the intersection of these circles
(cf. Observation 1). This idea is implemented in Algorithm 1.

To see the correctness of the algorithm, note that « and (3 are two consecutive
range sums of o’ that sum over at most n angles. Thus, the algorithm has a loop
for each angle a that might occur between x and y according to o.

If for some angle « all points from P are on the Thales circle Cy, then o
cannot be the angle between x and y, since the center of o-angularity would
have to be both on circle C,, and inside the convex hull of the points, which is
not possible (recall that the center cannot be a point from P by definition).

The running time of Algorithm 1 is O(n*logn). O

We now show how to simplify the previous algorithm to test in only cubic
time whether a point set is in biangular configuration, presumed we know the
two corresponding angles:

28 L. Anderegg, M. Cieliebak, and G. Prencipe

Algorithm 1 Algorithm for all angles less than 180°.

1: If the points in P are on a line Then
2: Return <not g-angular>>

3: 0 =(01,...,00,01,...,00)

4: x,y = two arbitrary neighbors on convex hull of P

5: For i =1 To n Do

6: For j=iToi+n—1Do

7 a=317_0

8: Cyzy = Thales circle of angle a for z and y

9: If at least one point from P is not on C;y Then
10: z = arbitrary point from P that is not on Cuy
11: For k=35+1TO j+n Do

12: ﬂ:Zf:jJrl o]

13: Cz. = Thales circle of angle 3 for z and z
14: If C.y and C.. intersect in two points Then
15: ¢ = point in intersection that is not x

16: If c is a center of o-angularity Then

17: Return <o-angular with center ¢>
18: Cy. = Thales circle of angle § for y and z
19: If C,y and Cy. intersect in two points Then
20: ¢ = point in intersection that is not y
21: If ¢ is a center of g-angularity Then
22: Return <c-angular with center ¢>

23: Return <not o-angular>>

Corollary 1. For two given angles o and 3 with 0° < «, 8 < 180°, biangular
configurations can be detected in time O(n?).

Proof. First observe that the special case where either o or 3 is of 180° is easy
to solve: In this case, the other angle has to be 0°, the point set P consists of
exactly 4 points, all points are on a line, and the center of biangularity is every
point between the two median points in P.

In the following, we assume that o, 3 < 180°, and adapt Algorithm 1 from
above for this special case: First, we pick two neighbor points x and y on the
convex hull of P. If the points in P are in biangular configuration, then the
angle between x and y is v = k- (a + 3) + 6, for some value k& € {0,..., %
and some angle 6 € {0°,«, 3}. For each of these possibilities, we compute the
corresponding Thales circle Cy,, of angle v. Like in Algorithm 1, if for some k
and ¢ all other points are on C;,, then these values cannot be the right choice.
Otherwise, we pick a point z that is not on C,,. The angle between y and z is
v =k (a+)+ ¢, for appropriate values &’ € {0,..., %} and ¢ € {0°,a, B}.
We then compute all corresponding Thales circles C,. of angle " and check for
each of the (at most) two points in the intersection between Cy,, and C,, whether
it is a center of biangularity. The correctness follows from Observation 1.

The running time of this algorithm is O(n?), instead of O(n*logn) for Algo-
rithm 1. This improvement results from two facts: First, instead of considering
all combinations of two consecutive range sums of ¢ in Algorithm 1, we consider

Efficient Algorithms for Detecting Regular Point Configurations 29

only all combinations of k(a +3) +6 and k'(a+ 3) + &', where k, k" € {1,..., 5}
and 6,6’ € {0° «a, 8}. This reduces the number of executions of the inner loop
from O(n?) to O(n?).

Second, within the loop, we can test a candidate ¢ in linear time (instead
of O(nlogn)) as follows: we compute all angles between = and p w.r.t. ¢ for
all points p € P. If any of these angles is not of the form k(a + 3) + 6 with
k€ {0,...,5} and 6 € {0° a, 3}, then ¢ cannot be a center of biangularity.
Otherwise, we use three arrays of length 4 to store the points from p, each
corresponding to one possible value of §. More precisely, if the angle between x
and p is k- (a+ B) + 8, then we store point p in position & of the corresponding
array. This process resembles a kind of bucket counting sort (see e.g. [6]). The
points are in biangular configuration with center ¢ if and only if the following
three conditions hold: 1. in the array corresponding to 6 = 0° there is exactly
one entry in each position; 2. one of the other two arrays is empty; and 3. in the
remaining array there is exactly one entry in each position. O

Observe that if the configuration is biangular, then we can immediately de-
termine the corresponding ordering of the points from the values in the three
arrays from the algorithm above. Furthermore, note that the previous corollary
yields immediately an algorithm for equiangularity with running time O(n?),
since in this case a = § = %. In the next section we will give an algorithm
that identifies equiangular configurations even in linear time.

3 Equiangular Configurations

In this section, we first show that there is at most one center of equiangularity.
Then we give a linear time algorithm that detects equiangular configurations.

Lemma 2. Given a point set P of n > 3 distinct points in the plane that are in
equiangular configuration with center c, the following holds:

1. Center c is invariant under straight movement of any of the points towards
to or away from c, i.e., the points remain in equiangular configuration with
center c.

Fig. 4. Equiangular configuration and its “shifted” points

30 L. Anderegg, M. Cieliebak, and G. Prencipe

\

RN TAIPANN
RSN
¢ Y ° Du ,\\\’§\5\\\§
® ° ° ° { ., 077:‘61 \\\J
/ - SN NN
< L [] []
x - M, s . P . .
[) [) ° °
(a) (b)

Fig. 5. (a) Median line M,. (b) Median cone Cone,.

2. Center c is the Weber point of P.
3. The center of equiangularity is unique.

Proof. The first claim is trivial. For the second claim, assume that we move
the points in P straight in the direction of ¢ until they occupy the vertices of
regular n-gon centered in ¢ (cf. Figure 4). These “shifted” points are rotational
symmetric, with symmetry center c. It is straightforward to see that the Weber
point for these shifted points is ¢, since it must be at the center of rotational
symmetry. Since the movements were in the direction of ¢, and the Weber point
is invariant under straight movement of any of the points in its direction [1], ¢
must be the Weber point of P. The third claim of the lemma follows immediately
from the previous one and from the fact that the Weber point is unique if the
points are not collinear [3] (observe that more than two points in equiangular
configuration cannot be collinear). O

A similar argument can be used to show that the center of biangularity, if
it exists, is unique. We now present an algorithm that identifies equiangular
configurations in linear time.

Theorem 2. Given a point set P of n > 3 distinct points in the plane, there
is an algorithm with running time O(n) that decides whether the points are in
equiangular configuration, and if so, the algorithm outputs the center of equian-
gularity.

Proof. We handle separately the cases of n even and n odd, where the first case
turns out to be much easier. Both algorithms can be divided into two steps: First,
they compute (at most) one candidate point for the center of equiangularity; then
they check whether this candidate is indeed the center of equiangularity.

1. Case: n is even. The main idea for n even is as follows: assume for a moment
that the points in P are in equiangular configuration with center c. Since n is
even, for every point p € P there is exactly one corresponding point p’ € P on the
line from p through ¢ (there cannot be more than one point on this line, since
this would imply an angle of 0° between these points and p w.r.t. ¢). Hence,

Efficient Algorithms for Detecting Regular Point Configurations 31

the line through p and p’ divides the set of points into two subsets of equal
cardinality § — 1. We will refer to such a line as median line (cf. Figure 4(a)).
Obviously, center of equiangularity ¢ must lie in the intersection of the median
lines of all points in P. We will use this observation in the following algorithm by
first computing two median lines and then checking whether their intersection
is the center of equiangularity.

Algorlthm 2 Algorithm for n even.

x = arbitrary point on the convex hull of P

M, = median line of =

If |M, N P| > 2 Then Return <not equiangular>>

y = clockwise neighbor of x on the convex hull of P

M, = median line of y

If |My, N P| > 2 Then Return <not equiangular>>

If M, N M, =0 Then Return <not equiangular>>

¢ = unique point in M, N M,

If c is the center of equiangularity Then Return <c-angular with center ¢
: Else Return <not equiangular:>

—_

Correctness. To see the correctness of Algorithm 2, observe the following:

For a point on the convex hull of P, the median line is unique. (This does
not necessarily hold for inner points.) If there are more than two points from
P on M,, then the configuration cannot be equiangular. To see this, recall that
the center of equiangularity, if it exists, will lie on M,.. If there are at least three
points from P on M,, then two of them will have angle 0° w.r.t. the center,
which is impossible for equiangular configurations.

If the two median lines M, and M, are equal, then the configuration cannot
be equiangular. To see this, first observe that in this case x and y are the only
points from P on M,. Since x and y are adjacent points on the convex hull of
P, all points from P are on one side of M,. On the other hand, since M, is a
median line, by definition the number of points from P on both sides of M, is
equal. Hence, n = 2, in contradiction to the assumption of the theorem.

On the other hand, if the two median lines M, and M, do not intersect, then
the points are not in equiangular configuration. This is obvious, since the center
of equiangularity will lie in the intersection of the median lines of all points
from P.

Finally, if the points are in equiangular configuration with center ¢, then ¢ must
lie in the intersection of M, and M,,.

Time Complezity. We now show how to implement each step of Algorithm 2 in
linear time.

In order to find point z on the convex hull of P, we could just compute the
entire convex hull, but this would take time @(nlogn). Instead, we take as x an
arbitrary point from P with a minimal x-coordinate. This is always a point on
the convex hull of P and can be found in linear time.

32 L. Anderegg, M. Cieliebak, and G. Prencipe

We can find M, in linear time as follows. First, we compute the slopes of
all lines from z to any other point p € P — {z} and store these slopes in an
(unsorted) array. Then we pick the line with the median slope. This requires
only linear time, since selecting the k-th element of an unsorted array - and
consequently the median as well - can be done in linear time [6].

Using the unsorted array from the previous paragraph, we can choose y € P
such that the line through x and y has maximal slope amongst all lines through
z and a point in P, using the unsorted array from the previous step. If there is
more than one candidate for y, then we take the one closest to x. Then y is a
point on the convex hull of P.

Finally, the test whether c is the center of equiangularity can be done in linear
time as follows, analogous to the test in the proof of Corollary 1: Let a = %.
We compute all angles between = and p w.r.t. ¢ for all points p € P,p # z. If
any of these angles is not a multiple of «, then the points are not in equiangular
configuration. Otherwise, we store the points from P in an array of length n —1,
where we store point p in the array at position k if the angle between x and p is
k - o. This process resembles again a kind of bucket counting sort (see e.g. [6]).
If there is exactly one point in each position of the array, then c is the center of
equiangularity; otherwise, the points in P are not in equiangular configuration.

2. Case: n is odd. For the odd case, we need to relax the concept of median line,
and introduce that of cone.

The basic idea of the algorithm for this case is similar to the case “n is even”,
but slightly more sophisticated, since we have to relax the concept of median
lines: assume for a moment that the points are in equiangular configuration with
center c. For every point p € P, there is no other point on the line from ¢ to p,
since n is odd and no angle of 0° can occur. Hence, such a line divides the set of
points into two subsets of equal cardinality ”T_l If we pick two points p;, p, € P
that are ”closest” to this line, in the sense that the slope of the line from p to
c is between the slopes of lines L, and U, from p to p; and p,, respectively,
then these two points define a cone with tip p (cf. Figure 4(b)). We will refer
to this cone as median cone, since the number of points from P on each side of
the cone (including lines L,, and U,, respectively) equals "T_l Observe that the
median cone is unique for points on the convex hull of P, and that the center of
equiangularity, if it exists, lies in the intersection of all median cones of points
on the convex hull of P. Moreover, for two points z and y on the convex hull of
P, every point that is between x and y in the ordering of the points that yields
equiangularity is a point in the area “between” Cone, and Cone, (bold points
in the upper left area in Figure 4(b)). We denote this number by k,,. Notice
that the angle between = and y w.r.t. ¢ would be (kg + 1) - .

The complete algorithm is shown in Algorithm 3, and illustrated in Figure 5.
Its main idea is to elect three points x,y, z on the convex hull of P; to use the
median cones of these points to determine the angels between the points w.r.t.
the center of equiangularity (if it exists); to find one candidate center in the
intersection of Thales circles for these points of appropriate angles; and, finally,
to check whether this candidate is indeed the center of equiangularity.

Efficient Algorithms for Detecting Regular Point Configurations 33

Algorlthm 3 Algorithm for n odd.

x = arbitrary point on the convex hull of P

Cone, = median cone with tip x

y = clockwise neighbor of x on the convex hull of P

Cone, = median cone of y

kzy = number of points from P — {z,y} that lie between the cones Cone, and

Coney, including the boundaries
360°

n
Bey = (kzy +1) -
Cazy = Thales circle for x and y of angle (.
9: Arc = circle arc Cqy N Cone, N Coney
10: g = line through the starting and ending point of Arc
11: H = halfplane defined by g that does not contain z and y
122 S=HNP
13: If S = () Then Return <not equiangular>>
14: z = point from S with maximal perpendicular distance from g over all points in P
15: If z € C;y Then Return <not equiangular>>
16: ky. = number of points from P — {z,y, z} that lie between the cones Cone, and
Cone,, including the boundaries
17: By, = (ky-+ 1) -«
18: Cy. = Thales circle for y and z of angle (3,
19: If |Cyy NCyz| = 1 Then Return <not equiangular>>
20: ¢ = unique point in Cyy NCy. — {y}
21: If c is the center of equiangularity Then Return <c-angular with center >
22: Else Return <mnot equiangular>>

Correctness. To see the correctness of Algorithm 3, observe the following:

By definition, no point from P can be strictly inside cones C'one, or Cone,,.

The center of equiangularity, if it exists, is inside the convex hull of the
points. Thus, it is straightforward which of the two Thales circles for x and y is
appropriate, since x and y are points on the convex hull. The same holds for the
Thales circle for y and z.

After picking z and y, we need to find another point z on the convex hull
such that the intersection of the two corresponding Thales circles yields a candi-
date for the center of equiangularity. For the choice of z we have to be careful: if
we simply took z as the next point on the convex hull (after x and y), it might
happen that the corresponding Thales circle C,, coincides with C,,, and, conse-
quently, we do not obtain a single candidate for the center of equiangularity in
their intersection. Therefore, we have to chose z such that it is on the convex hull
and such that it does not lie on Cyy. This is done in Lines 9-15, and discussed
in the following (see Figure 5(b)).

If S is empty, then the points are not in equiangular configuration. To see
this, observe that the center of equiangularity, if it exists, must be on Arc, with
Arc as computed in Line 9. On the other hand, if S = (), then Arc is completely
outside the convex hull of P, in contradiction to the fact that the center of
equiangularity must be inside the convex hull.

34 L. Anderegg, M. Cieliebak, and G. Prencipe

Fig. 6. (a) Determination of k;y, = 5 between U, and L,. (b) Determination of ¢'.

Point z computed in Line 15 is on the convex hull of P: since, by construction,
all points from P are on one side of the line through z that is parallel to g (line
¢’ in Figure 5(b)).

If point z is on C;y, then the points in P are not in equiangular configuration.
To see this, assume that z € Cyy. Then z € Arc by construction, hence, z €
Cone; NConey. By definition, no point from P can be strictly inside any median
cone; thus, z has to be at one of the two endpoints of Arc. Moreover, no point
from P can be strictly inside H, since H is delimited by g, and z is the point
from P furthest away from g. This implies that points on Arc are on or outside
the convex hull of P. On the other hand, only points on Arc might be a center of
equiangularity, since such a center must lie in the intersection of Cone,, Cone,
and Cgy. Since the center of equiangularity, if it exists, must be strictly inside
the convex hull of P (otherwise there would be an angle of 180°), the points
cannot be in equiangular configuration.

The two circles Cyy and C,, are different, since z ¢ C,,. Thus, they either
intersect in one or two points. If |C;y N Cy.| = 1, then y is the unique point in
the intersection, and the points in P cannot be in equiangular configuration. On
the other hand, if the center of equiangularity exists, then it is in C;, NC,.., and
thus found in Line 20.

Time Complexity. We now show how to implement each step of Algorithm 2 in
linear time.

Points x and y can be found in linear time like in the algorithm for the case
“n is even”.

To find the median cone Cone,, we proceed analogous to the search for the
median line in algorithm for the case “n is even”: First we compute the slopes
of all lines from x to every other point p € P, and store them in an (unsorted)
array. Let L, and U, be the two lines such that their slope is the [n/2]-th and

Efficient Algorithms for Detecting Regular Point Configurations 35

the [n/2]-th largest, respectively, among all stored slopes. These two lines define
Cone,, and can be found in linear time using like before an algorithm to select
the k-th element of an unsorted list [6]. Analogous, we can find Cone,,.

To determine value kg, let p be the point in the intersection of L, and U,,
the two lines that delimit cones Cone, and Cone, (cf. Figure ??(a)). Then k,,
is the number of points from P — {z,y} that lie inside or on the convex angle
in p with edges L, and U,. This number can be obtained in linear time by
comparing the position of every point in P against L, and U,. Value k. can be
found analogous.

Finally, the test whether ¢ is the center of equiangularity can be done in
linear time like in the algorithm for the case “n is even”. a

4 Conclusions

We have given an algorithm that decides in time O(n*logn) whether n points
are in o-angular configuration, and if so, the algorithm outputs a center of o-
angularity. The adaption of this algorithm for biangular configurations runs in
cubic time, if the corresponding two angles are given. Finally, for the case of
equiangularity, we have given an algorithm that runs even in time O(n).

While the algorithm for equiangularity is already asymptotically optimal,
we believe that the running time of the algorithm for o-angularity allows to be
significantly improved.

As already stated, our algorithm for equiangularity allows to find the Weber
point for such configurations, and this is a rather surprising result, since algo-
rithms to compute the Weber point (in finite time) are known for only few other
patterns. We are not aware of any general characterization of patterns where the
Weber point is easy to find; this might be an interesting line of future research.

References

1. L. Anderegg, M. Cieliebak, G. Prencipe, and P. Widmayer. When is Weber Point
Invariant? (Manuscript).

2. C. Bajaj. The Algebraic Degree of Geometric Optimization Problem. Discrete and
Computational Geometry, 3:177-191, 1988.

3. R. Chandrasekaran and A. Tamir. Algebraic optimization: The Fermat-Weber lo-
cation problem. Mathematical Programming, 46:219-224, 1990.

4. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots gathering
problem. In Proceedings of ICALP 2003, pages 1181-1196, 2003.

5. E. J. Cockayne and Z.A. Melzak. Euclidean constructibility in graph-minimization
problems. Math. Magazine, 42:206 — 208, 1969.

6. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

7. J. E. Goodman and J. O’'Rourke. Handbook of Discrete and Computational Geom-
etry. CRC Press LLC, Boca Raton, FL, 1997.

8. E. Weiszfeld. Sur le Point Pour Lequel la Somme Des Distances de n Points Donnés
Est Minimum. Tohoku Mathematical, 43:355-386, 1936.

Pickup and Delivery for Moving Objects
on Broken Lines

Yuichi Asahiro'*, Eiji Miyano?**, and Shinichi Shimoirisa®

! Department of Social Information Systems, Kyushu Sangyo University,
Fukuoka 813-8503, Japan
asahiro@is.kyusan-u.ac. jp
2 Department of Systems Innovation and Informatics, Kyushu Institute of
Technology, Fukuoka 820-8502, Japan
miyano@ces.kyutech.ac. jp
3 Products Development Center, Toshiba Tec Corporation, Japan

Abstract. We consider the following variant of the Vehicle Routing
Problem that we call the Pickup and Delivery for Moving Objects
(PDMO) problem, motivated by robot navigation: The input to the prob-
lem consists of n products, each of which moves on a predefined path with
a fixed constant speed, and a robot arm of capacity one. In each round,
the robot arm grasps and delivers one product to its original position.
The goal of the problem is to find a collection of tours such that the robot
arm grasps and delivers as many products as possible. In this paper we
prove the following results: (i) If the products move on broken lines with
at least one bend, then the PDMO is MAXSNP-hard, and (ii) it can be
approximated with ratio two. However, (iii) if we impose the “straight
line without bend” restriction on the motion of every product, then the
PDMO becomes tractable.

1 Introduction

The Vehicle Routing Problem (VRP for short) or Vehicle Scheduling Problem is
one of the best known routing problems (see for a survey [1] and the references
contained therein). In the VRP we have scarce capacitated vehicles, their home
depot, and a large number of customers who request the vehicles to transport
their products to the depot. A typical VRP can be described as the problem of
designing as short routes from the depot to the customers as possible in such
a way that each customer is visited only once by exactly one vehicle, all routes
start and end at the depot, the total demand of all customers on one particular
route cannot exceed the capacity of the vehicle, and all the products have to be
collected to the depot. The VRP has received considerable attention especially in
the operations research literature for its wide applicability to practical situations
and thus a lot of its variants have been introduced, such as the VRP with Time

* Supported in part by Grant-in-Aid for Young Scientists 15700021, and Research on
Priority Areas 16092223.
** Supported in part by Grant-in-Aid for Research on Priority Areas 16092223.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 36-50, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Pickup and Delivery for Moving Objects on Broken Lines 37

Windows (VRPTW) and the VRP with Backhauls (VRPB) (see, e.g., [2,3,4]).
In the VRPTW, each customer has a release time and a deadline, and the goal is
to visit as many customers as possible within their “time-windows.” The VRPB
involves both a set of customers to whom products are to be delivered and a set
of vendors whose products need to be transported back to the depot, and the
critical assumption is that all deliveries must be made on each route before any
pickups can be made.

In this paper, we consider a new extension of the classical VRP motivated by
a real-world routing situation, called the Pickup and Delivery for Moving Objects
(PDMO) problem: Given manufacture products initially located on numbers of
convey belts in arbitrary positions, the robot arm must grasp and deliver the
products to the fixed position (depot). That is, the input to the problem consists
of n objects (products), each of which moves on a predefined broken-line path
with a fixed constant speed, and a robot arm of capacity one. In each round, the
robot arm grasps and delivers one object to the depot. If some object can move
faster than the robot in the opposite direction from its current position, then
the robot is not able to collect the object. Therefore, the goal of the problem is
to find a collection of tours such that the robot arm grasps and delivers as many
objects as possible.

1.1 Owur Contributions

Since the original VRP and its variants are not only practically but also theoreti-
cally interesting, and not at all easy to solve, it is important to study the PDMO
from both the complexity and the algorithmic viewpoints. Hence it follows that
a fundamental question is the complexity status of the PDMO, especially with
respect to approximation. In this paper, we prove that the PDMO is MAXSNP-
hard in the general case, and moreover it is still true for the case where all objects
move on broken lines with only one bend. That is, unfortunately, we cannot ob-
tain a polynomial-time approximation scheme (PTAS) for the PDMO under the
assumption P # NP even if every motion of the object is highly restricted. On
the other hand, we provide a simple greedy algorithm that obtains a solution
with a value of at least ; times the value of an optimal solution. Finally, as a
straightforward step towards tackling this intractable problem, we slightly im-
pose one restriction on the motion of every object; we assume that every object
moves on an individual straight line with no bend. Then, under this assumption,
we show that there is an O(n logn)-time algorithm which maximizes the number
of objects collected by a robot arm.

1.2 Related Work

The VRP includes the Traveling Salesperson Problem (TSP) as a special case,
i.e., only one vehicle is available at the depot and no additional operational
constraints are imposed, which is probably the best important in the field of
complexity theory and combinatorial optimization (see, e.g., the classical book
edited by Lawler, Lenstra, Rinnooy Kan, and Shmoys [5]). Similarly to the prob-
lem of this paper, very recently, kinetic versions of the TSP, called the Dynamic

38 Y. Asahiro, E. Miyano, and S. Shimoirisa

k-Collect TSP problem [6], the Moving-Target TSP problem [7], or the Kinetic
TSP problem [8], have been introduced: Given n objects, each j moving with a
constant speed v;, and a robot arm R with capacity k£ and with the maximum
speed vg > v; for all j’s, we ask for the robot arm’s tour that collects all the
n moving objects and whose length is as short as possible. It is important to
note that the goal of the problem is to minimize the total completion time, not
to maximize the so-called profit. Chalasani, Motwani, and Rao [6] proved that
the problem can be approximated in polynomial time within a constant factor if
k = oo, and can be solved in polynomial time if £ = 1 and the robot and the ob-
jects move on a single track-line. Helvig, Robins, and Zelikovsky [7] showed that
there is a (14 «)-approximation algorithm if £ = co and at most O(log)lgogn) ob-
jects are moving, where o denotes an approximation factor of the best heuristic
for the classical TSP. In [8] Hammar and Nilsson showed that there is a PTAS if
k = oo and all objects have the same speed. Although there hardly appears to be
any prior work on the profit maximization, Asahiro, Horiyama, Makino, Ono,
Sakuma, and Yamashita [9] provided a couple of first-step results for several
special cases, and Asahiro, Miyano and Shimoirisa [10] for the time constrained
version; only a few approximable results are known for a very restricted case,
and non-approximable results have not been shown.

One can notice that there is a close connection between the PDMO and
some class of time constrained job scheduling problems, such as the sequencing
problems [11,12] and the job interval selection problems [13]. In the job scheduling
model, the input is a set of jobs, each of which has its constant processing time.
The objective is to schedule as many jobs as possible to a single machine (or,
several machines). Note, however, that in the PDMO the processing time for
each moving object, i.e., the period between the robot’s departure time and its
arrival time at the depot is variable, which makes the PDMO harder. The job
scheduling model also contains a large number of intractable cases, and hence a
great deal of effort has been devoted to the design of approximation algorithms
with small constant performance ratios [14,15,16].

1.3 Organization

The rest of this paper is organized as follows: We begin with more precise def-
initions of our problems and then summarize our results in Sect. 2. Then we
give a 2 factor approximation algorithm for the general problem, followed by
a polynomial time algorithm for moving objects on straight lines in Sections 3
and 4, respectively. In Sect. 5, we prove the MAXSNP-hardness of the PDMO.
Finally, we conclude in Sect. 6.

2 Problems and Results

Let B = {b1,ba, --,b,} be a set of moving objects in the xy-plane with the
Euclidean metric. The speed of each object b; is v(b;). As illustrated in Fig. 1,
a path of each object b; is a broken line given as a sequence of line segments,
or vertices labeled as Cy(b;) = (xo(b:),y0(b:)), C1(bi) = (z1(bs),y1(b;)) through

Pickup and Delivery for Moving Objects on Broken Lines 39

y
Co)

Cib)

Lo bi ey
C2) ‘ v(b;)
./,,@)/ o X
bj L)
J
C3)) C» (b)) C3(b)

Fig. 1. Moving objects and their paths

Cri)+1 = (@mbi)+1(0i), Ym(p,)+1(bi)). That is, the broken line has m(b;) bends.
Also, let m = maxy,ep m(b;). Every b; starts from Cy(b;) at time 0 and moves to-
wards the next point Cy (b;) with speed v(b;). Then, at time |Cy (b;)Co(b;)]/v(bs),
b; arrives at Cy(b;), changes the direction there, and moves towards Ca(b;), and
SO on.

We now can formulate the problem of this paper, Pickup and Delivery for
Moving Objects on Broken Lines (PDMO), as follows:

PDMO:

Instance: A set B = {by, b3, --,b,} of moving objects and their paths, where
each b; is initially placed on Cp(b;).

Question: Find a longest scheduling of a robot arm R with speed vg, that is rep-
resented as a sequence of triples (s1,b;,,91), (82, biy,92), -, for 41,42, -+ €
{1,---,n}, such that for any j, k, b;; # b;, and each of (s;, b;;,g;)’s satisfies
the following three conditions:

(1) R is at the origin O at time s;.

(ii) (Pickup) R can start from O at time s;, move onto the path of b;;, and
then grasp b;;. Namely, b;; arrives at the point where R is waiting for
bi; to come.

(iii) (Delivery) R can move back to O at time g;, and g; < s;41 (except for
the last one).

i

We simply call a turn of pickup and delivery of an object, collect the object.
A scheduling is wvalid if the three conditions (i), (ii), and (iii) are satisfied. We
assume that the robot arm can stop only at the origin and makes no detour to
move to any position, because a general scheduling can be transformed easily
to such a scheduling without decreasing the number of objects to be collected.
This assumption yields that g; is uniquely determined by s; and b;,. If it is not
ambiguous in the context, we often abbreviate, for example, Cy(b;) and v(b;) as
Cy and v, respectively. Without loss of generality we set vg = 1. Since an object
whose speed is slower than vr can be collected at any time, we focus only on
the case that all the objects move with faster or same speeds compared to the

40 Y. Asahiro, E. Miyano, and S. Shimoirisa

robot arm. We say an algorithm ALG is an r factor approximation algorithm
for a maximization problem if for any instance I, OPT(I)/ALG([) is bounded
above by r, where OPT(I) is the objective function value of an optimal solution
for I and ALG(I) is that of a solution ALG obtains.

In this paper we mainly prove the following three theorems:

Theorem 1. The PDMO is MAXSNP-hard even if m(b;) =1 for all i’s.

Theorem 2. There exists a 2 factor approximation algorithm for the (general)
PDMO that runs in O(mn?).

Theorem 3. If Vi,m(b;) = 0 (i.e., all the objects move on straight lines), then
there exists an O(nlogn)-time algorithm that mazimizes the total number of the
moving objects collected by a robot arm.

In the following sections, we shall give the proofs of Theorems 2, 3 and 1, in
that order.

3 A 2-Approximation Algorithm

In this section, we present the 2 factor approximation algorithm of Theorem 2,
but before describing it, we first show a lemma. Let the completion time T;(t)
of an object b; be the smallest t; where the robot arm starts at time ¢ or later
from the origin O, grasps the object b;, and delivers it at time ¢4 back to O.

Lemma 1. For any object b; and time t, T;(t) can be computed in O(m) time.

Proof. Consider an object b with speed v > 1 (= wvg). First we argue only
about the first line segment of its path. Let the first two vertices of its path be
Co = (z,y) and C1 = (21,y) (z1 < z and y > 0), i.e., b horizontally moves left.
Note that when we focus on one object, we can adjust the axes to meet this
condition by rotation and symmetry in O(1) time. If b can be collected on this
segment, z > 0 holds; otherwise, b cannot be collected since in the case where
x < 0, it moves away from the origin and is faster than the robot arm.

Consider a point M = (ex,y), where z1/x < e < 1. If the robot arm R grasps
b on M and delivers it to the origin O, then the time ¢(e) that the robot arm
delivers b is given as summation of time that the object reaches M and that the
robot arm moves back to the origin from M:

(1—e

te) =)z + \/y2 + e222,
v

This takes minimum by setting

oy
V2 — 1

and hence the point My, on which the robot arm grasps b is

(&

_)
Mmin - (\/’02 _ 1ay) (1)

Pickup and Delivery for Moving Objects on Broken Lines 41

Then the minimum completion time Ty, that the robot arm grasps b on CyCy

is obtained as
x Yy vy
Tmin -

— + .
vooov2—1 V-1

Also, b arrives at My, at time

l-ez = Y

tmin = v = v - ’U\/’UZ 1
and the distance |OMpyi,| is equal to vy/v/v2 — 1. Therefore, to minimize the
completion time, R starts at time

vy
to = tmin — \/ 9 1
V2 —

from O (if it can), moves to My, grasps b, and finally returns back to O.
However, since the above ¢y depends on the location (z,y) of Cy, it is possibly
to be negative that implies that the robot arm cannot start from the origin at
to. Therefore, in summary, if x > 0, tg > 0 and 0 < ¢ < g, the robot arm R can
accomplish the motion and then T;(¢) = Tin holds since R can stay at O until
time tg, moves to the point My, grasps and eventually delivers b.

For the other case ty < 0 or t > tg, suppose that R starts at time ¢ from O
and grasps b on (z—vt’ (v, z,y,t),y) at time ' (v, z,y,t) < |CoCi|/v = (x—x1)/v.
Let ¢ in the following satisfy 1 +|OC1| = (x —x1)/v. The time T that R delivers
b is

(v, 2y, 1)+ (x — vt (v, 2,y,1))2 + 2.
Since ¥/ (v, z,y,t) =t + /(z — vt'(v, 2, y,1))2 + 2,

T=t+2(x—vt'(v,z,y,t))2 + 2, and
(vr —)2+ /(ve —)2 — (v2 — 1)(22 + y2 — 12)

t/(v’ x’ y7 t) = 1}2 _ 1

This motion can be done when (vz —t)% — (v? —1)(2% +y? —t2) > 0, that derives

T — /222 — (v2 — 1)y? T+ /222 — (v2 — 1)y?

; (Zty) <t< ; (= ts).
As a result,
x y vy)
va\/vz_lJr\/vg_l,1f:r>0,t020, and 0 <t < g,
t+2v/(z —vt'(v,x,y,t))2% + 32,
Py V@)

if x > 0 and max{tg,t2} <t < min{ty,t3}, and

undefined, otherwise.

42 Y. Asahiro, E. Miyano, and S. Shimoirisa

All the above tg, t1, to, t3,t' (v, z,y, t) and so T'(t)’s can be computed from x, 1, y,
vand tin O(1) time. By “undefined” we mean that the object cannot be collected
on the line segment in that situation.

Now we look at a line segment C;C;1 of the path (j < m(b)). Similarly we
can compute the minimum completion time T(j)(t) with regard to C;Cj41 in
O(1) time: Let the time that b arrives at C; be

Z |CkC'k+1\

Only by replacing the above symbols, e.g., with z;, one can see that the
following holds:

L Yj vYj

- +
vooov2—1 Vo2 -—
t+ 2\/(:vj —ot' (v, x5, y5,t))? + 7,

1, iffBj > 0,t9 > 0, and0§t§sj + 1o

T(j)(t) -
if z; > 0 and s; + max{to,t2} <t < s; + min{t¢1,?3}, and

undefined, otherwise.

Since the domain of 7% (t) for C;Cj4+1 overlaps the others, to obtain the true
completion time at ¢, we have to compute the above T(j)(t)’s for all the line
segments C;Cj41’s, and then select the minimum value among them, which
requires O(m) time.

As for the case v(b) = vg, similar but rather simpler discussion can be done
that proves the statement of the lemma. We omit it here. O

The following is a description of the algorithm. The operator o denotes con-
catenation of a sequence and a triple which represents a tour of collecting an
object.

Algorithm Iterated Greedy:
Stage 0. Set the current time ¢ = 0, and initial scheduling & = NULL.
Stage 1. The following operations are executed while some of objects are pos-
sible to be collected, i.e., the completion time for an object is defined.
1-1. Set j = argmin, {T;(¢)}.
1-2. Grasp and deliver b;: S = S o (t, b, Tj(t))
1-3. Update t = Tj;(t), and return to the beginning of Stage 1.
Stage 2. Output S and exit.

Proof of Theorem 2. First of all, we estimate the running time of the above
Iterated Greedy. From Lemma 1, Stage 1-1 is executed in O(mn) time since
each completion time T;(t) for b; is obtained in O(m) time and the number of
objects is n. Stages 1-2 and 1-3 can be done in O(1) time. Since the num-
ber of iterations of Stage 1 is at most n and Stage 2 is done in O(n) time,
Iterated Greedy runs in O(mn?) time.

Pickup and Delivery for Moving Objects on Broken Lines 43

Next we prove that Iterated Greedy is a 2 factor approximation algo-
rithm. Suppose that given an instance, Iterated Greedy collects p moving ob-
jects, ui,ug, -+, up, in this order. Also, suppose that for the same instance
an optimal algorithm OPT collects v1,va,---,v4 (¢ > p) in this order. Let
the scheduling S4 of Iterated Greedy be (s1(A),u1,91(A)), (s2(A4), uz, g2(A)),

-+ (sp(A),up, gp(A)) and also let Sopr of OPT be (s1(OPT),v1, g1(OPT)),
(s2(OPT),va,92(OPT)), - - -, (s4(OPT), vy, g4(OPT)). We divide the time inter-
val [0, T),], where T, = max{g,(4),g,(OPT)}, into [0,91(A)), [91(A), g2(4)),
h [gp(A)a Tm]'

Consider the first interval [0, g1(A)). Since Iterated Greedy first collects
an object whose completion time is minimum, in this interval, OPT delivers
no objects and ¢g1(OPT) > g1(A) holds. In the second interval [g1(A), g2(A)),
Iterated Greedy delivers one object ui. Assume that go(OPT) < g2(4), i.e.,
OPT delivers two objects v1 and vg in this interval. If vo € B—{uq,v;}, then this
contradicts the fact that go(A) is the minimum among the completion times of
B —{u1}, since g1(A) < g1(OPT) < s9(OPT) < g2(OPT) < g2(A) that implies
the completion time of vs is less than that of us. Therefore, in this case, vy is
only possible to be identical to uy. Therefore within the interval [g1(A), g2(A))
in which A delivers one object, OPT can deliver at most two objects. Similarly
for the other interval [g;(A), gi+1(A)), if the number of objects OPT collects in
this interval is more than one, then the additional objects collected belong to
{u1,- -, u;}, because u;4+1’s completion time is minimum among B —{uq,- -, u;}
at time g;(A4). By induction, the number of objects OPT collects in [0, g;+1(4))
is at most 2¢, while A collects i objects ui,- -+, u; in this interval, in which the
increase ¢ comes from {uq,---,u;}. This concludes the proof. a

Although the above analysis is rather simple, the factor 2 is best possible for
Iterated Greedy; there is a tight example that Iterated Greedy can collect
only half of objects that an optimal solution does.

Proposition 1. There exists an instance for which the number of objects col-
lected by Iterated Greedy is 1/2 of an optimal solution.

Proof. See Fig. 2. The initial points of objects b; and by are respectively (I,1)
and (I +¢,—(l +¢€)), where [is some constant and € is small positive. The angle
/(Y is set to, say, 60°. Suppose that the speeds of the objects and the robot
arm are all 1. Since the minimum completion time 2[is obtained by grasping by
on the point D at time [, Iterated Greedy collects by first. However, at time
2l or later, by cannot be collected, so that the number of objects collected by
Iterated Greedy is one. On the other hand, the optimal solution is collecting
by and by in this order. When by is delivered at time 2 + 2¢, by already passed
through D but there is another chance to collect it on the point F at time
(14 2v/3)l. Therefore, the optimal number of objects to be collected is two, and
is twice of that by Iterated Greedy. O

This worst case example intuitively shows the intractability of the problem,
and is based on the proof of MAXSNP-hardness in Sect. 5. On the other hand,

44 Y. Asahiro, E. Miyano, and S. Shimoirisa

C D Co .
—<l—@ objectb;

object b,

Fig. 2. A worst case example for Iterated Greedy

we can obtain optimal solutions if all the paths of objects are straight lines,
which is shown in the next section.

4 An O(nlogn)-Time Algorithm for No Bend

Assuming that all the paths of the objects are straight lines, we shall give an
algorithm mentioned in Theorem 3. At first, we show the following lemma on
Iterated Greedy in this setting:

Lemma 2. Iterated Greedy obtains an optimal solution when all the paths of
objects are lines.

Proof. Look again at the discussion of the proof of Theorem 2 in the previous
section. The main reason why the approximation ratio rose up to two was that,
say, in the interval [g1(A), g2(A)), OPT could collect an object u; after the
time ¢1(A) at which Iterated Greedy delivered w;. However, if uq moves on
a straight line, this cannot happen: Recall that we assume the speed v of an
object is faster than or equal to the speed vr(= 1) of the robot arm. We explain
the situation by using Fig. 2 again. Suppose that Iterated Greedy grasps bs
on a point Z (not shown in Fig. 2) at time ¢. Then, the time Iterated Greedy
delivered by is t + |OZ|/vg. |OZ|/vg > |ZF|/v holds since |0OZ| > |ZF| and
vr < v. Let us consider any algorithm that has not collected by until time
t + |0OZ|. Such an algorithm cannot collect be starting from O at time t + |OZ|
or later, whatever |OZ| is, since at that time bs passed through F' and the speed
vgr of the robot arm is less than or equal to that of by in this situation. This
implies that any algorithm can collect at most one object in a divided interval
described in the proof of Theorem 2, except the first interval [0, g1(A)) that no
algorithm can collect any object. Therefore the number of objects collected by
Iterated Greedy is optimal. O

Iterated Greedy calculates all the completion times and selects the min-
imum one iteratively in Stage 1. However, we show that by obtaining once
the completion time functions T;(t)’s of all the objects for an arbitrary time
t at the beginning and by using the lower envelope of those functions, the run-
ning time can be improved. Now, let 7 = {T1(t), T2(t), - -, Tn(t)} be a collec-
tion of completion time functions. The lower envelope of 7 is now defined as
ET(t) = minlgign Tl(t)

Pickup and Delivery for Moving Objects on Broken Lines 45

Algorithm Envelope:

Stage 1. For each object b;, compute its completion time function T;(t) for an
arbitrary time t¢.

Stage 2. Compute the lower envelope E7(t) of T = {T(t), Ta(t),- -, Tn(t)}.

Stage 3. Set t =0 and & =NULL initially.

Stage 4. Execute the following operations while the lower envelope is defined
at time ¢:
4-1. Select the lowest function Tj(t) at time ¢ by using the lower envelope

E7(t). Then, grasp and deliver the object b;: S = S o (¢, b5, T;(t)).

4-2. Update ¢t = T}(t) and return to the beginning of Stage 4.

Stage 5. Output S and exit.

Proof of Theorem 3. First we shall note the correctness of the algorithm
Envelope. This algorithm essentially executes the same greedy strategy used in
Iterated Greedy, and so runs correctly. Next, we show that Envelope runs in
O(nlogn) time. Stage 1 needs O(n) time based on Lemma 1, since only one seg-
ment exists for each object and so its completion time function can be obtained
in O(1) time. In Stage 2, the lower envelope is obtained by a divide-and-conquer
method [17]. Its running time is dependent of the number of intersections be-
tween a pair of completion time functions. Since all the objects move on straight
lines at constant speed, a completion time function intersects only once with the
other completion time function, so that the required time to obtain the lower
envelope is O(nlogn). Stages 3 and 5 are done in O(1) time and O(n) time,
respectively.

The rest is analysis for Stage 4 that takes O(n) time in an amortized sense:
The lower envelope is assumed to be given as pairs of an time interval and an
index that indicates which object yields the minimum completion time within
the interval. By definition of the paths of the objects, each completion time
function for an object appears only once as a part of the lower envelope, hence
the number of the pairs of time interval and an index is at most n. Suppose
that at an iteration of Stage 4, the current time is ¢ and by is the one whose
completion time is minimum among all. Then as stated above in the proof of
Lemma 2, for time T} (¢) which is used as ¢ for the next iteration, the completion
time for the object by is undefined. Therefore, each time-interval of the lower
envelope is under consideration at most once in Stage 4. Since Stage 4-2 can
be done in O(1) time, Stage 4 takes O(n) time in total. In summary, the time
complexity of Stage 2 is the largest among all the stages, and then the running
time of Envelope is O(nlogn) in total. O

5 MAXSNP-Hardness

We shall show the proof of Theorem 1. In [13], the following restricted version of
Job Interval Scheduling Problem, called JISP2, is shown to be MAXSNP-hard.
We reduce the JISP2 to a restricted version of the PDMO in which all m(b;)’s
are equal to one, i.e., all the moving objects turn only once.

46 Y. Asahiro, E. Miyano, and S. Shimoirisa

JISP2:

Instance: A set J ={1,2,---,n} of n jobs, two intervals of length 2 associated
with each job j: I;1 = [rj1,7j1+2], and I o = [r) 2,752+ 2], where r; 1 and
rj2 are integers, 7;1 > 0 and ;1 +2 < r; 2 holds.

Question: Find a longest sequence S of intervals I, k., Lj, ko» -+ Lj, ks that
satisfies the following two conditions:

— Either I;; or I; 2 can be included in S for any j. (Neither may be in-
cluded.)

—For1<i<h—1,7r58+2<715,, %
others in S.)

.. (i.e., no interval overlaps any

We show an L-reduction from the JISP2 to the PDMO. The definition of the
L-reduction from problem A to problem B is as follows [18]:

An L-reduction is a pair of functions R and S, both computable in
logarithmic space, with the following two additional properties: First, if
x is an instance of A with optimal cost OPT (), then R(x) is an instance
of B with optimal cost that satisfies OPT(R(z)) < o - OPT(z), where
« is a positive constant. Second, if s is any feasible solution of R(z),
then S(s) is a feasible solution of x such that |OPT(x) — ¢(S(s))| <
B |OPT(R(z)) — c(s)|, where f3 is another positive constant.

For a job j of the JISP2 which has parameters r; and 7o as its starting times
of intervals, we construct an object b; with speed v = 2 and its path for the
PDMO: As illustrated in Fig. 3, b; is initially placed on a point A, and its path
is bended at a point C. We determine (i) the radius ! (and so F'), (ii) the location
of D, (iii) the location of C' that determines E and G, (iv) the location of A,
and finally (v) the location of B, in this order. The reason why the speed v is
set to two is presented at the almost end of this proof.

We first set
Viz—1 V3

= v 2

and then AC and CB are tangential lines of a circle whose center is at O and
radius is [. In addition to that, AC is parallel to the horizontal x-axis. We
now determine the exact location of D. Let the points at which T'(t) gives the
minimum on AC (and CB) be D (and E) that can be obtained by (1) in the
proof of Lemma 1,

()= () ()

by which |OD| =1 holds.

Next we determine the location of C. Note that |OC|? = % + |FC|? holds.
Then, we choose the location of C such that (|DC| + |CE|)/v = ra — (r1 + 2)
which is the gap between the first and the second intervals of the job j. Since

Pickup and Delivery for Moving Objects on Broken Lines 47

object

Fig. 3. Reduction from the JISP2 to the PDMO

th)g\sﬁcﬁg&;g%nd hence |DC|+|CE| = |FC|+|CG| = 2|FC|, we set the location

2
|OC|2 _ l2 + ("U(TQ - (27”1 +2))> _ i + (7,2 . (7,1 + 2))2

We can always determine the location of C' that satisfies the above equation.
Then the location of G is determined in straightforward, and also E is determined
based on the location of C' as D above.

The remainder of the points, A and B are to be determined. The location of
A is the point such that |AD| = (r1 + 1)v, i.e.,

A= (i (4 D, Wz_ 1) - (; 2(r 4 1), é3>

holds. Then we extend the line segment C'G to some arbitrary position labeled
as B. This ends the reduction that can be done in logarithmic space. Note
that D and E can be always located on AF and CG, respectively, because
|DF| = |EG| = 1/v = 1/2 and the above configuration gives |AF| > v = 2
and |CG| > v/2 = 1. By this reduction, the minimum completion time for b; is
obtained by starting from O at time r; (or r2), then grasps it on D (or E) at
time 7 + 1 (or r2 + 1), and finally delivers it at time r4 + 2 (or ro + 2).

For an instance X of the JISP2, we show the first condition of the L-reduction
in a stronger form OPT(X) = OPT(R(X)), where R(X) is an instance of the
PDMO given as the above reduction from X. Let a feasible solution S of JISP2
be Ii ky, l2.ky, -+, where k; € {1,2}. For all i’s, if k; = 1, then we choose as
the robot arm’s motion (r;1,b;,7;1 + 2) in which the robot arm starts from O
at time 71, grasps b; on D, and delivers it at time r; + 2. Otherwise (k; = 2),
(74,2, bi, 74,2+2) that grasps b; on E is chosen as well. Since Vi, 7, +2 < 7y 1,5,
in S, the scheduling of the robot arm chosen is valid, and then the number of
objects collected is equal to the number of jobs done in S for the JISP2. At this
point, we can only say that OPT(R(X)) > OPT(X).

We call the robot arm’s scheduling S is canonical if it includes only these
two kinds of triples (75,1, b;, 75,1 +2) and (74,2, b;, 7.2 +2). Also we call a triple or
motion (s,b,g) is canonical if it is either of them. In the above, we transformed
a feasible solution of the JISP2 to a canonical scheduling of the PDMO with the
same objective value. Next we will show that any scheduling of the robot arm

48 Y. Asahiro, E. Miyano, and S. Shimoirisa

can be transformed into a canonical one without changing the objective value
(the number of collected objects). This implies that it is sufficient to consider
canonical schedulings only, and then concludes that OPT(R(X)) = OPT(X)
since canonical schedulings can preserve the objective value.

Suppose that a scheduling S of the PDMO is not canonical. § includes (i) a
motion starts before r; 1 (or ; 2) and grasps an object b; on AD (or CE), and (ii)
a motion starts after r; 1(or r;2) and grasps an object b; on DC (or EB). See
Fig. 3. As for (i), since the motion (r; 1, b;, 75,1 +2) for object b; has the minimum
completion time, the motion (s,b;,g) of (i) meets the conditions s < r;; and
ri,1 +2 < g. Then, if S is valid, replacement of (s,b;,g) to (r;1,b;, 71 +2) in
S also gives a valid scheduling and the number of collected objects does not
change. As for the case considering the motion (r;.2,b;,7; 2 + 2), it is similar.

Let 8’ be another scheduling which is obtained by replacing all the motions
of (i) in S with canonical ones. That is, &’ includes canonical motions and the
motions of (ii). Consider the first motion (s, b;, g) of (ii) in &’. It satisfies ;1 < s
and r;1 +2 < g (or, 1,2 < s and r; 2 +2 < g). Suppose that s —r; 1 < tmax < 1
(which is shown later) where t,,,x denotes the maximum latency of time to start
and grasp b; compared to the canonical motion. Let us consider the case the
robot arm collects b; by a canonical motion (rj,b;,7; + 2), and next collects
b; by a motion (s,b;,g) of (ii), i.e., 7; +2 < s. The intervals corresponding to
the jobs of the instance X for the JISP2 are supposed to be [r;,r; + 2] and
[ri, i + 2]. (We do not have to care about whether they are I;1 or I 2, and I; ;
or I; 5.) Then, r; +2 < s < 7; +tmax holds. There are the following two cases: (a)
r; > r;+2 and (b) r; < rj+2. The case (a) implies that [r;,7;+2] and [r;, r; +2]
do not overlap, and therefore, the canonical motion (r;, b;, r; +2) can be adopted
instead of the motion (s, b;, g). In the case (b), since r; and r; are both integers,
r; < r; + 2 implies that 7; +1 < 7; + 2. Then s < 7; +tmax <7 +1 <1 + 2,
and this contradicts the assumption that the robot arm collects b; starting at
time s from the origin after it delivers b; at time r; + 2. From the cases (a)
and (b), therefore, the first motion of (ii) in &’ can be also replaced with a
canonical motion. Since this replacement can be done iteratively, as a result all
the motions of (ii) can be replaced with canonical ones without changing the
number of collected objects.

Next we prove the assumption ¢, < 1 in the above discussion. Suppose
that the robot has to start from O at time ¢ to grasp an object b on the point
D, which yields minimum completion time. Since D = (1/2,+/3/2), at time ¢ + 1
the object b arrives at D. Consider the motion of the robot arm that starts at
time ¢ + ¢, (2z) and grasps b at the point on DC' whose distance from D is z,
so that max, t,,(z) = tmax. See Fig. 3 again. Since at that point, the object b
arrives at time ¢ + 1 + z/v, and so

2
1
tw(z):t—&—l—l—i— t+\/12+(v—z> :1+;—\/z2—z+1.

;—\/zz—z+1<0

Pickup and Delivery for Moving Objects on Broken Lines 49

always holds, and then ¢, (z) < 1 for any z that we would like to show. This ob-
servation is also true for the point E' and the other objects. The rest of the proof
for the L-reducibility is to show how to obtain a feasible solution S(sg) of X, the
instance of the JISP2, from a feasible solution sr of R(X), the instance of the
PDMO. Simply we need to transform sp to a canonical one. The corresponding
sequence of jobs is set as the feasible solution S(sg) for X. According to the
above discussion, since the transformation of a scheduling of the robot arm to
a canonical one does not change the number of collected objects, the number
of collected objects in a canonical scheduling corresponds to the number of jobs
executed in a solution for the JISP2, ¢(S(sg)) = c¢(sr). In conjunction with
OPT(R(x)) = OPT(x), this implies the second condition of the L-reducibility
in a stronger form, |OPT (z) — ¢(S(sg))| = |OPT(R(x)) — c¢(sgr)|-]

6 Conclusion

In this paper we introduced a kinetic extension of the VRP, which is formulated
as the robot grasp and delivery problem: Given moving objects, the objective is
to find a collection of tours such that the robot arm grasps and delivers as many
objects as possible. Then, we proved its MAXSNP-hardness, and gave a 2 factor
approximation algorithm assuming that there is one robot arm with capacity
one. An apparent remaining problem is to develop a better approximation al-
gorithm with a performance ratio less than 2. Another direction for complexity
and algorithmic research is to consider more general cases, for example, several
robots move simultaneously, and/or each can collect the larger number of mov-
ing objects in one round. Especially, the case the capacity of the robot arm is
a more general, for example, positive constant such as three, is an interesting
variation to be considered. Two types of the problem in such a case are possible:
The robot arm has to consume its capacity, i.e., collects exactly three objects, in
each tour, or it can deliver only one or two objects to the origin if needed. For
the former problem, the similar idea of Iterated Greedy in Sect. 3 may work
with additional polynomial time, though we have not yet obtained non-trivial
results for the latter.

References

1. P. Toth and D. Vigo. An overview of vehicle routing problems, In The Vehicle
Routing Problem, P. Tosh and D. Vigo (Eds.), STAM, 2001.

2. N. Bansal, A. Blum, S. Chawla, A. Meyerson. Approximation algorithms for
deadline-TSP and vehicle routing with time-windows. In Proc. ACM Symposium
on Theory of Computing, pp.166-174, 2004.

3. A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, M. Minkoff. Approximation
algorithms for orienteering and discounted-reward TSP. In Proc. IEEE Symposium
on Foundations of Computer Science, pp.46-55, 2003.

4. M. Desrochers, J. Desrosiers, M.M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40, pp.342-354,
1992.

50

10.

11.

12.

13.

14.

15.

16.

17.

18.

Y. Asahiro, E. Miyano, and S. Shimoirisa

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (Eds.). The traveling
salesman problem, Wiley, Chichester, UK, 1985.

P. Chalasani, R. Motwani, A. Rao. Approximation algorithms for robot grasp and
delivery. In Proc. International Workshop on Algorithmic Foundations of Robotics,
pp-347-362, 1996.

C.S. Helvig, G. Robins, A. Zelikovsky. Moving target TSP and related problems.
In Proc. European Symposium on Algorithms, pp.453-464, 1998.

M. Hammar and B.J. Nilsson. Approximation results for kinetic variants of TSP.
In Proc. International Colloquium on Automata, Languages and Programming,
pp-392-401, 1999.

Y. Asahiro, T. Horiyama, K. Makino, H. Ono, T. Sakuma, M. Yamashita. How
to collect balls moving in the Euclidean plane. Electronic Notes in Theoretical
Computer Science, 91, pp.229-245, 2004.

Y. Asahiro, E. Miyano, S. Shimoirisa. K-collect tours for moving objects with
release times and deadlines. To appear in Proc. Systemics, Cybernetics and Infor-
matics, 2005.

J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1, pp.343-362, 1977.

J.M. Moore. An n job, one machine sequencing algorithm for minimizing the num-
ber of late jobs. Management Science, 15, pp.102—-109, 1968.

F.C.R. Spieksma. On the approximability of an interval scheduling problem. Jour-
nal of Scheduling, 2, pp.215—227, 1999.

D. Karger, C. Stein, J. Wein. Scheduling algorithms. In Handbook of Algorithms
and Theory of Computation, M.J. Atallah (Eds), CRC Press, 1997.

A. Bar-Noy, S. Guha, J. Naor, B. Schieber. Approximating the throughput of
multiple machines under real-time scheduling. SIAM Journal on Computing, 31
(2), pp.331-352, 2001.

J. Chuzhoy, R. Ostrovsky, Y. Rabani. Approximation algorithms for the job interval
selection problem and related scheduling problem. In Proc. IEEE Symposium on
Foundations of Computer Science, pp.348-356, 2001

P.K. Agarwal, M. Sharir. Davenport-Schinzel sequences and their geometric appli-
cations. In Handbook of Computational Geometry, J. Sack and J. Urutia (Eds.),
Elsevier Science, 1999.

C.H. Papadimitriou. Computational Complexity, Addison-Wesley, 1994.

A Static Analysis of PKI-Based Systems

Benjamin Aziz!, David Gray?, and Geoff Hamilton?

! Department of Computing, Imperial College,
180 Queen’s Gate, London SW7 2AZ, U.K
baziz@doc.ic.ac.uk
2 School of Computing, Dublin City University, Dublin 9, Ireland
{dgray, hamilton}@computing.dcu.ie

Abstract. This paper presents a non-uniform static analysis for SPIKY,
an extension of the spi calculus with capabilities for PKI operations. The
analysis, which follows a denotational framework, captures the property
of term substitutions resulting from communications, cryptographic and
PKI capabilities. The results of the analysis are used to formalise def-
initions of two security properties: the term secrecy and (un)certified
peer-entity participation.

1 Introduction

In [7], an extension of the spi calculus [1] called the SPIKY language was intro-
duced to clarify some of the issues related to key usage in spi calculus protocol
specifications, like the validity of key-user bindings and users’ ownership of pro-
cesses, by making use of special primitives for performing Public-Key Infrastruc-
ture (PKI) key-retrieval operations. These included primitives for the retrieval
of private and public parts of key pairs belonging to PKI users registered in
the domain of the underlying PKI state. The primitives express both certified
and uncertified public key-user bindings. Uncertified bindings are necessary for
the modelling of protocols designed to run over devices with relatively limited
computational power, e.g. handheld PDAs.

In this paper, we construct a non-uniform static analysis for the SPIKY
language that captures the property of term substitutions occurring in PKI
systems. In particular, the analysis captures PKI users sending and obtaining
the substituted terms. Based on this information, it is possible to formalise
security properties like for example, whether a user is capable of learning a term,
and whether a user can (possibly) confirm that another user has participated
in an instance of some protocol. To demonstrate this latter property, consider
the following simple protocol between A and B, assuming they both know each
other’s public keys, KX and K;F, and N4, Np are fresh nonces:

Message 1 A — B:A Ny
Message 2 B — A: B, Np, [Nall
Message 3 A — B: [{NB}]K;

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 51-65, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

52 B. Aziz, D. Gray, and G. Hamilton

A specification of this protocol in the spi calculus will necessarily make the
assumption that the public key KE (respectively Kj) must be validly bound
to B (respectively A), and that the partial correctness property of the protocol
terminating will ensure that B (respectively A) participated in the protocol,
even in the presence of middle-man attacks. Using the key retrieval capabilities
of SPIKY, it is possible to assert this binding formally. Moreover, our static
analysis will formally detect the fact that (un)certified public keys were used to
arrive at the fact that B (respectively A) participated in the protocol, and that
the private keys used in the signatures were not leaked to third parties.

The static analysis presented in this paper is directly related to previous
analyses [3,4,5,6], which were designed to capture the term substitution property
for systems specified in the w-calculus and the spi calculus. The main novelty
about the current analysis is that it can deal with systems equipped with key
retrieval capabilities over the underlying PKI state.

The rest of the paper is organised as follows. In Section 2 we review the
syntax of the SPIKY language. In Section 3 we extend the domain model of [4]
to SPIKY processes and we build a denotational semantics for the language. In
Section 4, we give an extended semantics that captures the property of term
substitutions in SPIKY language. This semantics is safely abstracted in Section
5. In Section 6, we formalise the security properties based on the results of
the previous section and in Section 7, we review a simple example of a mobile
authentication protocol. Finally, in Section 8, we conclude the paper.

2 The SPIKY Language

We review here the syntax of the SPIKY language introduced in [7]. The syntax
consists of terms, processes, systems and protocols, as shown in Figure 1. The
syntax of terms and processes is mostly similar to that of the spi calculus, except
for the following differences, which occur in the syntax of processes:

— The signature with recovery validation process, case L of [x}]n in P,issim-
ilar to its counterpart in the spi calculus, whereas the signature with appendiz
validation process, [[{L, M }|n]P, behaves as P only if L is the signature
[{M}| k- and N is the public key KT, otherwise, the process will block.

— Abstraction instantiations, A(M), substitute = in the definition, A(z) £ P,
where z is bound to P, by the term M yielding a process P[M/x]. In order
to simplify our static analysis, we consider only non-recursive definitions.

— The processes, let © = private(M) in P, let x = public(M) in P and
let x = certified(M) in P, attempt to retrieve the private, uncertified and
certified public keys, respectively, of the PKI user, M. If successful, the re-
trieved key, k, substitutes x, and the process continues as P[k/x], otherwise,
the process blocks. The success or failure of these key-retrieval processes
depends on the identity of the owner of that process.

In addition to terms and processes, systems formalise the idea of the ownership
of a user, N, to a process, P, written as [P]", where N must reduce to an

A Static Analysis of PKI-Based Systems 53

L,M,N ::= terms
a,b,c,k,m,n € N names
z,y,z,v,w €V variables
A,B,C,U € AG agents
{M}n symmetric encryption
{M} N public-key encryption
{MY N digital signature
(M, N) pair
M+t public key component
M~ private key component
P,Q,R == processes
M(N).P output
M(z).P input
PlQ parallel composition
(vn)P restriction
'P replication
[M is NP match
0 null
let (z,y) = M in P pair splitting
case L of {z}N in P symmetric decryption
case L of {[z]}n in P public-key decryption
case L of {z}]n in P signature with recovery validation
[{L, M}N]P signature with appendix validation
A(M) abstraction instantiation
let x = private(M) in P private key retrieval
let © = public(M) in P public key retrieval
let x = certified(M) in P certified public key retrieval
E,F,G u= systems
E|F parallel composition
(vn)E restriction
PN process ownership
Prot n= protocols
(0, E) (PKI state, system) pair

Fig. 1. The syntax of the SPIKY language

agent’s name. Systems can also be composed in parallel and new names can be
introduced within the scope of a system. Finally, a protocol is a pair consisting
of a PKI state, 0 : AG — N, and a system, E. A PKI state maps distinct
names of PKI users (agents) to their corresponding key pairs. The details of the
actual binding of users to key pairs are abstracted, as well as the mechanisms
for revocation. In general, 0 is assumed to be up to date when a protocol is run.

In the following sections, we assume that the notions of a-conversion and term
substitution as well as free and bound names and variables of terms and processes
all apply as usual. We also assume that there are no occurrences of homonymous
bound names and variables. Finally, in any protocol, we assume that there are
only finitely many agents, possibly with replicated process behaviour.

3 A Domain-Theoretic Model

We introduce here a domain-theoretic model for closed processes in the SPIKY
language that is an extension of the model originally given in [4] for the spi
calculus. Our model is based on the following predomain equations:

54 B. Aziz, D. Gray, and G. Hamilton

Spiky = 1+ P(Spiky | + In + Out) (1)
In > N x (T — Spiky) (2)
Out 2 N x (T x Spiky, + N — ...N — (T x Spiky |)) (3)
T = N + Sec + Pub + Sig + Pair (4)
Sec 2T x N (5)
Pub=T x N (6)
Sig =T x N (7)
Pair 2T xT (8)

Where Spiky | is the domain of processes, In and Out are the predomains of
input and output actions, respectively. Input actions are modelled as pairs; a
name, N (the channel), and a function, T' — Spiky | , that can be instantiated
with a term, T, yielding a process in Spiky . Output actions are divided into
free and bound output actions. These are pairs consisting of the channel, NV,
and either another pair, T x Spiky | , denoting the message, T', and the residue
Spiky | (free outputs), or composed functions, N — ...N — (T x Spiky),
that introduce new names to the message, T, and the residue, Spiky | (bound
outputs). P(—) is Plotkin’s powerdomain [8] applied to the disjoint union of in-
put, output and silent actions (the latter represented by Spiky,) to construct
Spiky. The one-element predomain, 1, representing terminated (deadlocked)
processes is adjoined as in [2, Def. 3.4]. The flat predomain of closed terms,
T, is defined as the disjoint union of the predomains of names, N, secret-key
ciphers, Sec, public-key ciphers, Pub, digital signatures, Sig, and pairs, Pair.
The predomains Sec, Pub and Sig are represented as pairs, T' x N, where the
term, T, is encrypted/signed using the key, N. There is no predomain of vari-
ables as part of the definition of T since we only deal with closed semantic
terms.
The following functions are also defined, leading into Spiky | [2, Def. 3.3]:

0:1— Spiky 9)
-1 (Spiky | + In+ Out), — Spiky (10)
W: (Spiky, x Spiky) — Spiky | (11)
new : (N — Spiky |) — Spiky | (12)

The empty set,), is required to represent inactive processes. The singleton
map, { — [}, creates elements of Spiky, from elements of input, output and
silent actions, and W, is the standard multiset union operator representing non-
determinism. Finally, new is used to interpret the effects of restriction.
Concrete elements of ¢ € T include names, a, b, ¢, secret-key ciphers, sec(t, k),
public-key ciphers, pub(t, k), digital signatures, sig(t, k), and pairs, (¢,t¢'). Ele-
ments p € Spiky | include the bottom element, { L[}, the empty set,) (where
{L} T 0), input actions, {Jin(a, \y.p)|}, free output actions, {out(a,t, p)[}, bound

A Static Analysis of PKI-Based Systems 55

new(An.0) =0
new(An.{| L]}) = {LB "
. , ifa=n

new(An.{in(a, Az.p)[}) = {lin(a, Az.new(An.p))|}, otherwise
0, %f a=mn

new(An.{out(a, t,p)[}) = { Jout(a, dn.(t, P))1 ;fng i Zg(z)
{lout(a, t, new(An.p))[}, otherwise

new(An.{out(a, A\my ... Amyg.(t, p))[})

N ifa=n
{lout(a, An.Amq ... dxmy.(t, p))[}, if n € n(t) and n # a

{lout(a, Am1 ... Amy.(t, new(An.p)))[}, otherwise

new (An.{|tau(p)[}) {tau(new(An.p))}
new(An.(p1 W p2)) new(An.p1) W new(An.p2)

Fig. 2. The concrete definition of new over elements p € Spiky |

output actions, {out(a,Any ... An.,.(t,p))[} silent actions, {teu(p)[} and sums,
p W q. The effects of restriction are interpreted by defining new as in Figure 2.
These effects lead to the blocking of processes attempting to communicate over
fresh, non-extruded channels and the transformation of free outputs to bound
outputs whenever the message of communication is a fresh name. Otherwise,
new has no effect and it is simply distributed over .

The denotational semantics for the SPIKY language is given as a semantic
function, S(E)) p ¢s 0 € Spiky, , defined by the set of rules of Figure 3. The
0 environment is defined as the PKI state of some protocol, such that 6(U) is
a name representing the key pair associated with the user, U, where (U)™" is
the public part of that key pair and 6(U)~ is the private part. The multiset,
p, is used to hold systems composed in parallel with the analysed system and
{ — I} and W are overloaded from their definitions in (10),(11) to deal with p.
Furthermore, rule (R0) is used to interpret the contents of p. The environment,
¢s : V. — T, where V is the flat predomain of variables, captures any term
substitutions that occur in the semantics®. The special function, g, returns the
semantic value of a term:

és(M), fMeNAMEV
sec(ps(ps, M'), ps(ds,N)), if M ={M'}n
Vos, M : ps(¢ps, M) = § pub(ps(¢s, M'), os(¢ps, N)), if M = {{M']}n
sig(ps (s, M'), ps(ps, N)), it M = [M'}n
(@S(¢SaN)7LPS<¢SaL))a ifM:(NvL)

Rules (S0A4) and (S0B) interpret parallelism and restriction between two sys-
tems by joining the parallel systems to p and using the new operator, respec-
tively. Rules (S§1)-(S816) deal with process ownership by cases. Rule (S1), deals
with output actions taking into consideration any communications that may
occur between the output channel and appropriate input channels guarding
processes in p. The ¢s is updated appropriately with the substituted seman-
tic elements. Rules (S2) deals with input functions leaving out communica-
tions since these are considered in (S1). Rule (S3) interprets directly parallel

! Note that initially, Vu € V + N : ¢so(u) = u.

56 B. Aziz, D. Gray, and G. Hamilton

(S0A) S(E | F) p ¢s 0 =RHE}EAF} W) ¢s 0

(S0B) S((vn)E]) p ¢s 0 = new(An.R{|E[} & p]) ¢s 0)

(S1) S(M(LY.P1Y]) p ¢s 6 =

(¥ {ltau(RH P17 wp[P 1Y /TM (2).P 17 1) ¢s OI})
M (z).P U p
W {lout(ps(ds. M), vs(ds, L), RUITPIV] w o) ¢s)]}

where, ¢g = ¢s[z — ¢s(¢s, L)]
and, ¢s(¢s, M) = <Ps(¢s,M)EN

(82) S([M(y).-P1Y) p ¢s 0 = {lin(ps (s, M), \y. R([{I [P1Y[W p) és 0)]}
where 893(4537) 6

(83) SUPIQ)Dpos 0 =RUEMPIVFEATQIV W) ¢s 0
(84) S([(wn)P1Y) pds 6 = newAn.RU[P1V[} wp) és 6)
(85) S('P1YD p ¢s 6 =F

where, F = {{\J_|},S([fHP[bnvi(P)/bnv(P)]]U Dpos 0|i=0...00}

and, bnv; (P) = {z; | = IE bnv(P)}
(S6) S([IM is NIP1V) p ¢s 0 =
é%([{I[PWUI}LﬂpD ¢s 0, if ¢s(9s, M) = ¢s (s, N)
s otherwise
(87) S([01Y) p ¢s 0 =0
(S8) S([let (x, y) M in P1Y) p ¢s 6 =
g)z([{erW Fwp) ¢sle—t,y—1t]0, lftfsws’M) (t,t)
(89) S([case L of {x}n in P1Y]) p ¢s 6 =

RUIIP17[@ p) dslz — 1] 0, lffsws, L) = sec(t, k) and ¢s(¢s,N) =k
otherwise
(S10) S([case L of (b in P1Y) p ¢s 6 =
72([{| [P17 wp) dslz — 1] 0, if ps(ds, L) = pub(t, k") and ws(¢s, N) =k~
otherwise
(811) S([[case L of [z)ln in P1Y]) p ¢s 6 =
RUTPIVR o) ¢s 0, if ps(ds, L) = sig(t, k) and ¢s(ps, N) =k
where, ¢g = ¢s[z — t] .
otherwise
(512) S([[KL, MYn 1P17) p és 0 =
RUTPIVR o) ¢s 0, if ps(ds, L) = sig(t, k™) and ¢s(ps, N) = k*
and s (¢s, M) = t
0, otherwise
(813) STAMM)]Y) p ¢s 0 =
{ RUITP1Y @) ¢s 0, where A(z) £ P and ¢g = ¢s[z — ps(9s, M)]
) otherwise
(S14) S([let x = private(M) in P1Y) p ¢s 6 =
RU{IP17]} @ p) ps[z — 0(U)7] 0, ifﬂfS(d{& M) = ¢s(¢s,U)
(815) sqflet z = public(M) in P1Y) p ¢s 6 =
RUIPIV @ p) ¢sle — (U] 0, if ps(ds, M) = ¢s(ds,U)
(] RUITPIY[} W p) dslz — 0(U)T] 0, otherwise

U dom(6)
(816) S([let & = certified(M) in P1Y) p ¢s 6 = R{[P1YV]} W p) ¢s[z — 6(M)T] 0
(RO) R(p) ¢s 0 = EL+J S(E) (P\{ER}) ¢s 0
P

Fig. 3. The standard denotational semantics of the SPIKY language

composition by the addition of the parallel subprocesses to p. Rule (S4) uses
new to interpret the meaning of a restriction. Rule (S5) interprets a replica-
tion, [!P]Y, as the least upper bound of the infinite poset F. This least upper
bound represents the least fixed point meaning of !P. Due to the fact that the
semantic domain, Spiky | , is infinite, the calculation of this least fixed point may
not terminate within finite limits. The rule also uses a labelling mechanism to

A Static Analysis of PKI-Based Systems

(€1)

(€2)
(€3)
(€4)
(€5)

(€6)

(€7)

(€8)

(€9)

(£10)

(£11)

(£12)

(£13)

(£14)

(£15)

(£16)

(RO)

(E0A) E(E[F) p de 0
(€0B) E((vn)E) p de 0

ROIET & (FT & 7) 92 0
RUEL W) ¢ 0
U¢ ¢E Ug 13
M (). U ,
if, pe(de, M) = pe(de, M) €N
where, g = R{[P1V[} wp[[P 1V /[M (2).P 17]) ¢¢
and, ¢g = ¢elz — {(ve(¢e, L), U,U)} 0
E([M(y)-P17) p b 0 = ¢e
E(PI Q) pee & =RUPIVP6AIQIY}wp) ¢ 6
E([(vn)P1') p ée 0 = RA{TPIV] @) de 0
EQPIYD p o 0 =Ur
where, F = {1p ,&(ﬂ_‘[P[bm)j(P)/bm)(P)]]U Dpoe 0| i=0...00}
and, bnv; (P) = {z; | * € bnv(P)}
EQIM is NIP1Y) p ¢ 0 =
RUTP17] w o) e 0, ift}&]@E(d{E,M) = ve(¢e, N)
E, otherwise
E([017) p de 6 = ¢
E([let (z,y) = M in P1Y]) p ¢e 0 =
{ RUIPIVL wp) delz — {(t,U,U)},y — {(t ,U, U} 0, if e (de, M) = (4,1)
¢E, otherwise
E([case L of {x}n in P1Y) p ¢ 6 =
{ RUTPIVL o dele — {(t,U, U)}] 0, if v (¢, L) = sec(t, k)

E(M(L).P1Y) p ¢ 0

and ¢ (¢, N) = k
e, otherwise
E([case L of {lz}n in P1V]) p ¢e 0 =
{ RUTPIVY © 0] delz — {(t, U, U)}] 0, if o (de, L) = pub(t, k*+)
and @e(¢g, N) =k~
PE, otherwise
E([case L of [aYln in P1Y]) p ¢ 0 =
RUTPIVE ® p) delz — {(t, U, U)}] 0, if v (de, L) = sig(t, k™)
and e (¢e, N) =k
9E, otherwise
E(TKL, MYn 1P1Y] p g 0 =
RUITPIY} Wp) oe 6, if we(Pe, L) = sig(t, k™) and @e(pe, N) = kT
and ¢ (¢, M) = ¢
e, otherwise
EQTAMTY) p de 0 =
{ RUIPIVD 6 o) delz — {(ve(be, M), U, U)}] 0, where A(z) 2 P
PE, otherwise
E([let © = private(M) in P1V]) p ¢ 0 =
{ (7;([{\ (P17} p) ¢elz — {(6(U), U, U} 6, if pe(9e, M) = pe (42, U)
5([[?& z = public(M) in P1Y) p ¢ 6 =
RUTPIVE w o) ¢elz — {(0(U)F, U, U 0, if pe(de, M) = ve(de,U)
U, RU [P1Y[} w p) ¢elz — {(6(U)T,U,U)}] 6, otherwise
U dom(0)
E([let © = certified(M) in P1Y) p ¢ 6 =
RU[P1Y]} @ o) delz — {(B(M)", U, U)}] 6
R(pD ¢e 0 = U, €(ED (P\{IED) ¢& 0
E p

Fig. 4. The non-standard semantics of the SPIKY language

57

rename all the bound variables and names, bnv(P), of the spawned processes by
subscripting those variables and names with a number signifying process copy.
Rule (S86) resolves the meaning of two terms using ¢s. Rule (S87) interprets
the meaning of a null system as the empty set mapping, (). Rule (S8) splits the el-
ements of a pair term. Rules (§9)—(S512) deal with cryptographic systems for the
decryption of symmetric and public-key ciphertexts and signatures with recovery

58 B. Aziz, D. Gray, and G. Hamilton

and appendix validations. A residual system, [PV, signifying the success of the
operation is added to p, else, if the operation fails, () is returned instead. Rule
(S813) interprets the meaning of abstraction instantiations directly by adding the
definition to p and updating ¢s with the substituted term. Rules (S14)—(S16)
deal with PKI operations for retrieving private, uncertified and certified public
keys. This is done using the PKI state, 6, and the user owning the system, U.
The uncertified public key operation offers less guarantees (if the owner of the
process requires other users’ keys), therefore, it may return the public key of
any PKI user, U’, in dom(0). On the other hand, the certified version is always
guaranteed to return a valid public key, regardless of the owner’s identity.

4 Non-Standard Semantics

We extend here the standard semantics of the previous section to a non-standard
semantics that captures the property of term substitutions. Hence, the meaning
of a system is now given as a special environment, ¢g : V — (T x AG x AG),
which maps each variable of a closed system to a set of triples representing se-
mantic terms that may substitute the variable, and names of PKI users that
instantiate and own that variable. Note that AG here represents the flat pre-
domain of agent names corresponding to the set AG. Since the non-standard
semantics is precise (copies of bound names and variables are always distinct),
each variable will be mapped to a singleton set per choice of control flow.

A non-standard semantic domain, D, =V — p(T x AG x AG), can be
constructed, ordered by subset inclusion as follows:

Voe1,0e2 € D1t pe1 Ep g2 & Ve €V : gg1(x) C dea(x)

with the bottom element, 1 p , being the null environment, ¢¢g, that maps each
variable to the empty set. The union of environments operation, Uy, can also be
defined as follows:

Voe1,0s2 € D1, x € Vi (de1 Up de2)(x) = de1(x) U dea(x)

The non-standard semantics of the SPIKY language is defined using the seman-
tic function, E(E)) p ¢e 6 € D, as illustrated in Figure 4. The definitions of p
and 6 are as in Section 3. The definition of the special function, ¢ allows for
the meaning of a closed term to be computed under some ¢g:

t, if M eVA
pe(M) ={(t,U,U")}
M, if M eN

5 560(808(¢5»M/)»905(¢£7N))» if M = {MI}N
pe(e, M)™ = § pub(pe(de, M'), pe(de,N)), if M ={{M'}y
sig(pe(pe, M'), pe(pe, N)), it M =[{M']
(pe(pe, M'), pe(ps, M")), it M = (M', M")

2 Note that the case where M € V A ¢g(M) = {} will never occur for closed terms.

A Static Analysis of PKI-Based Systems 59

The main difference in this semantics as compared to the standard semantics of
the previous section is the fact that the meaning of a process is a ¢¢ environment
rather than an element of Spiky | . Note again the difference in performing uncer-
tified versus certified public key retrieval in rules (£15) and (€£16), respectively.
In the former case, the owner of a process may obtain any public key stored in
when asking for some other user’s public key without any guarantees as to the
validity of the key-user binding (unless the owner asks for its own public key).
In the latter case, this requirement is always guaranteed to return a public key
that is validly bound to its user.

5 Abstract Semantics

One problem with the non-standard semantics of the previous section is that it is
not guaranteed to terminate due to the possibility of infinite behaviour resulting
from the presence of replication. Therefore, it is necessary to introduce a safe
abstraction that limits the size of the semantic domain. This abstraction is a
variation of the abstraction used in [3,4,6].

We begin first by assuming a predomam of tags, Tag, ranged over by t,t,t,
where t is the tag of a generic term, ¢ is the tag of a name or a variable, and # is
the tag of a complex term (mphertext, signature, pair). Next, we appropriately
tag M, M' in N(M).P, let (z,y) = (M, M) in P, case {M}y of {x}n in P,
case {M}n of {z}n in P, case [M}n of [z}]n in P, A(M), and tag each
of private(M), public(M) and certified(M) in the syntax. Furthermore, the
following functions are defined over tags and systems:

— value_of ({t1,...,t,}) = {M,..., M,}, which when applied to a set of tags,
{t1,...,tn}, returns the corresponding set of terms, {Mq,..., M,}.
— tags_of (E) = {t1,...,t,}, which when applied to a system, E, returns its set
of tags, {t1,...,tn}

We now introduce the ay, ;; abstraction function, which keeps to a finite level,
the number of copies of bound variables, bound names and tags.

Definition 1. Define agy : N x N x (V + N + Tag) — (Vi + N* 4 Tag®):

tr, if M =t; € Tag and i > k
ty,if M =t; € Tag and i > k'

VM € (V+N+Tag),i,k,k" € N:agy (M)=1< xp, if M =2, €V and i > k
ag, if M =a; € N and i > k
M, otherwise

The resulting abstract predomains, V¥, N* and Tagﬁ, can be defined as V# =
V\{z; | j >k}, N* = N\{a; | j > k} and Tag* = Tag\({{; | j > k} U {i; |
i > k'}). Informally, k constrains the number of bound variables and names, and
tags of primitive terms, whereas k' constrains the number of tags of complex
terms. In effect, constraining the tags of primitive terms implies limiting the
copies of bound names and variables carrying the tags, whereas constraining the
number of tags of complex terms means limiting the depth of data structures.

60 B. Aziz, D. Gray, and G. Hamilton

For example, in the process !(vn)a(nf) | la(z), it is possible to spawn infinite
copies of each replication, (v n1)6<n§1> | a(xzy) | (v n2)6<n§2> | a(xzs) | ...
It is clear that ¢ is an indicator to the number of copies n has after spawning
each process. On the other hand, the process !a(x).d({a:}i> | @(b), which also
spawns a(xl).a({xl}il) | a(m).&({m}iﬂ | @(b) |...demonstrates the role of
t as an indicator to the number of times the ciphertext, {x}, is applied to b.

Using ay x , we construct ¢4 : VF — o Tag* x AG x AG), with a meaning
similar to ¢¢ in the previous section. Furthermore, a domain, Dﬁl =Vt >
o(Tag* x AG x AG) is formed as follows:

Va1, da2 € Dz € Vg s das < dai(a) C das(x)

with a bottom element, L s, representing the null environment, ¢40. Taking

Dﬁ_ as the abstract semantic domain, we can define the abstract semantics of
the SPIKY language using the function, A(E]) p ¢4 6 € Dﬁ_, as shown in Figure
5. The definitions of p and # are as in the previous sections. The special func-
tion, 4, returns a set of terms corresponding to a term, M, given substitutions
captured by ¢4, as follows:

pa(gpa, M) =@ y(¢a, M)y,

where, M’ = Moy (t)/t][akk (z)/x][ow,k (n)/n], for all tags, ¢, names, n, and
variables, x, of M,

and ¢’y (pa, M)s = if M € s then {} else

5014(¢A7L)3U{M} fMeV
Levalueof(fst(¢a(M)))
{M}, if, M e N
{{N,}tL ‘ N’ € gp%\(d)AaN)sU{M}aL/IG Qo%l(d)AvL)sU{M}}? lf’ M = {N}tL
{{[Nq}ZL | N € oy (da, N)supmy L' € ©a(@a, L)suany } i, M = {[N]}zL
{ENfL | N € @lalPas N)suqary, L' € ©l4(da, L)suqany) i M = [N}
{(LLL&)E ‘ L/l ftSO_IA((ﬁAaLl)SU{M}vLé € (p_lA(¢A7L2)SU{M}}a
if, M = (Ly, Lo

We describe a few rules here. Rule (A1) deals with the case of output actions,
dealing with possible communications with appropriate input actions in p. The
tag of the output message is registered in ¢4 as a value for the input variable.
The semantics is imprecise, since ¢4 only captures an abstract tag as a value
for an abstract variable. Rule (A5) introduces the functions:

ren(x,i) = fold sub; (fold sub; x bnv(x)) tags_of (x)
fold fe{xy,...;xn} = f(xn,..., f(z1,€)...)

sub; x y = ylz;/z]

which are used in the definition of the least fixed point meaning of a replicated
process. This meaning is defined as the least upper bound of the set F, which

A Static Analysis of PKI-Based Systems

(A0A) A(E[F) p éa 0
(A0B) A((vn)E) p éa 0

(A1)

(A6)

(A7)
(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(RO)

R{E}W{FL @ p) da 0

v RHIEL @) ¢a 0

A([M(LY).P1Y) p ¢a 6 Us da Us A
M (2).P U p

if, palpa, M) Noa(da, M) NN # {}

where, g = RU{[P1Y} wp[[P 1Y /M (2).P 17]) ¢ 6

and ¢ = Palay , (2) = ¢alay, (2)) U{(ay, (1), U, U)}]

A([M ()-P1Y) p ¢a 0 A

AP Q1Y) p ¢a 0 RUMPI w {1V} wp) ¢a 0

A([(vn)P1Y) p da 6 =RUTPI"} o) ¢a 0

A('P1Y) p éa 0 =Ur

where, F = {LDn JA(Iren(Pi)) p ¢ 0] i=0...00}

AQ[IM is NIP1Y) p éa 6 =
{ RUITPTY W o) da 0, if oal(da, M) Noalda, N) # {}

¢a, otherwise

A([01Y]) p ¢a 6 = ¢a
A([let (z,y) = M in P1Y) p ¢a 0 =
U, REIP} @) da 0, if ALY, N*) € pal(oa, M)

(L, Nt) oa(oa,M)
where, pa = dalay (@) = dalay, (2)) U{ay, (1), U, U},
apr (Y) = dalay , () U{ay, (t),U, U}
DA, otherwise
A([case L of {z}n in P1Y]) p ¢a 6 =
Ue REIPE W) ¢a 0, if, n € palda, N)
{Alt}n WA(¢AwL)
where, ¢a = dalay i () = palay () U{(ay , (1), U, U)}]
DA, otherwise
A([case L of {z]tn in P1] p ¢a 0 =
Us REIPEWp) ¢a 0, if, n™ € pa(da, N)
AMIB L eadaL)
where, ¢p = dalay i () = palay () U{(ay , (1), U, U)}]
DA, otherwise
A([case L of [z}~ in P1Y) p ¢a 6 =
Us RUPH@p) da 6, if, nt € pa(da, N)
KMy, — eal(oasL)
where, ¢a = dalay i () = palay ; () U{(ay , (1),U,U)}]
DA, otherwise
A KL, MYn 1P1YD p da 6 =
RUTPIVI @ p) ¢a 0,
gafﬁ E ealoa; N), {B'Y,.— € va(¢a,L) A B' € pa(da, M)
A, otherwise
A(TAM YD p da 0 = RUTPIV W p) da 0 where, A(z) £ P
and ¢a = daloy, i, (2) = daloy i () U {(ag , (£),U,U)}]
A([let = = private(M)* in P1Y) p ¢a 6 =
{ RUTPTYE wp) dalay i (@) = dalay ,x (@) U{(ay,, (1),U,U)}] 6,
if U € pa(da, M), where, private(U) = 60(U)™
A, otherwise
A([let = = public(M)" in P1Y]) p ¢a 0 = RI{[P]V[} & p) ¢ 0
where, 5 = dalay (3?{) — ¢+A}(0¢k,k () U (o (1), U, U)}
. _[{eU)TY, if U € paloa, M)
and, value_of ({t}) = { {0(U)T |U € dom(8)}, otherwise
A([let z = certified(M)" in P1Y) p ¢a 0 =
RUITPIVL W o) dalo, s, (@) — dalay, (@) U{(aw, (), U,U)} 0,
where, certified(M) = 0(M)"
R(p) ¢a 0 = U, AUPIYD (WMTP1YL) ¢a 6

rPU ,

Fig. 5. The abstract semantics of the SPIKY language

61

62 B. Aziz, D. Gray, and G. Hamilton

can only be finite in this semantic. As a result, the termination of the least fixed
point is formalised as follows.

Theorem 1 (Termination of the least fixed point calculation)
The calculation of rule (A5) terminates.

Proof Sketch. To prove the termination property, it is necessary to satisfy two

requirements. First, the semantic domain must be finite. This is satisfied by the

definition of Dﬂ_, where Tagf and AG are both finite. The second requirement is

that A([T]P1Y) p ¢4 6 must be monotonic over P, i.e. A([T[P1Y]) p ¢4 0 C s
(]

A(TIP1Y) p ¢4 0. O
i+1
We can state the safety of the abstract semantics by the following theorem.

Theorem 2 (Safety of the abstract semantics)

vpapv ¢5,¢A,k7k/75(”PWUD P ¢5 0= (pv d)/g),A(HVP—lUD 4 QS.A 0= d)fA :
(HM,CL' : (pg((bg,M) S qbg(l‘) =

3t € palarr (z) : M* € value_of ({t}) N M* = fold suby M nv(M))
=

M,z : pe(pe, M) € ¢p(z) =

3t € ¢/y(anr (2)) : M* € value_of ({t}) A M* = fold subyj M nv(M))
where, suby i Yy = ylogk (x)/x]

and, nv(M) is the set of names and variables of M

Proof Sketch. The proof is by induction over the structure of the abstract se-
mantics and relies on first proving the safety of the Uy operation. O

The theorem states that for any term, M, captured in the non-standard se-
mantics by including its pg (¢, M) value in the value of a variable, ¢ (x), then
that corresponds to capturing a tag, t, in the abstract semantics, by ¢/, (o i ()).
The appropriateness of ¢ is expressed by the ability to obtain (by folding) an
abstract form, M* = fold suby M nv(M), of the concrete term, M, by evalu-
ating t using value_of . More concisely, every concrete term, M, captured in the
non-standard semantics is also captured in the form of the corresponding ab-
stract tag, t, in the abstract semantics. From now on, we shall use the following
predicate, to denote the property that a term, M, is captured by an agent, B,
sent by another agent, A, given the results of an abstract semantics, ¢4, and
the constraints, k and £’
captured(M, A, B, ¢4, k, k') et
3t € Tag',x € dom(p4) : (t, A, B) € pa(x) A MH € value_of(t)

6 Security Properties

In this section, we formalise two security properties that can be checked by the
static analysis of the previous section. These properties are the term secrecy and
the peer-entity participation.

A Static Analysis of PKI-Based Systems 63

6.1 Term Secrecy

We formalise the property that a term, M, is never leaked to some agent, U,
with respect to the results of the abstract semantics, ¢ 4, and using the captured
predicate defined in the previous section, as follows.

Property 1 (Secrecy of the term M w.r.t. U)
MU' € AG : captured(M, U’ U, ¢4, k, k')

From now on, we write the predicate, secret(M,U), to indicate that M remains
secret with respect to U.

6.2 Peer-Entity Participation

Peer-entity participation means that an agent, A, knows to a certain degree of
certainty that another agent, B, has participated in a session of some protocol
in which A is also a participant. In reality, there are many scenarios that this
property could be established, both in its one-way and two-way forms. In this
section, we discuss one such scenario, where A creates a nonce, NV, and N is signed
by B, then, provided that only B has the knowledge of its own private key, A
knows that B has just participated in the protocol if it receives back the signature
and is able to verify it. The degree of certainty to which A may establish the
property depends on whether A performs a certified or an uncertified retrieval
of the public key of B. In the uncertified case, A may still be able to raise its
degree of certainty by relying on trusted third parties to perform the certified
public key retrieval.

Based on this, we define the certified peer-entity participation and the uncer-
tified peer-entity participation, as follows.

Property 2 (Certified peer-entity participation of B by A)
captured(0(B)~, B, B, o4, k, k') A

(3t € Tagh,x € dom(da) : da(z) = {(t, A, A} A O(B)** € value_of(t)) A
(3U, L : captured([LYopy-,U, A, ¢4, k, K')) A

(VU : U’ # B = secret(0(B)~,U"))

Property 3 (Uncertified peer-entity participation of B by A)
captured(0(B)~, B, B, o4, k, k') A

(3t € Tagh,x € dom(da) : (t, A, A) € dpalz) A O(B)*F € value_of(t)) A
(3U, L : captured([{ LY o5y-,U, A, ¢a,k, k') A

(VU : U’ # B = secret(0(B)~,U"))

7 Example

We consider here an example of mobile protocol authentication taken from [7].
In this example, we have that agent A is running on a small device with com-
putational power insufficient for performing the full certification of the public
key of B, therefore it relies on a trusted server with much more computational
power to complete the verification process and forward its signed nonce to B:

64 B. Aziz, D. Gray, and G. Hamilton

INIT(a,b,s,ch,ch’) £ (v na)ch{a,na).ch(b', ny, sig).
[bis ¥'] let k, = public(b) in
[Ksig, nallx,] let kq = private(a) in
let ks = certified(s) in ch/({{[{no}k,»bs ko] k.)-0

RESP(b,a,ch) = ch(a',na).
[a is a'] let k;, = private(b) in
(v) ch(b,ny, {nalk,).ch(sig).
let k, = certified(a) in [[sig, ns}]x,].0

SERV (a,s,chl,ch2) £ let k, = private(s) in
ch'(c).case c of {p[}x, in
let (sig, b, key) = p in
let ky, = certified(b) in [key is ky]ch{sig).0

SYST 2 (v ch)(v ch')([INIT(A, B, S, ch,ch/)]* |
[RESP(B, A,ch)]® | [SERV(A,S,ch,ch’)]?)

Fig. 6. SPIKY definition of the mobile authentication protocol [7]

) A—B:A Ny

) B— A:B,Np,[Nalg,-

) A= S {[{NsYk,- B Kp s
(4) S—B:[{Nplx,-

The specification of this protocol in the SPIKY language is given in Figure 6.

7.1 Analysis Results

Applying A(SY ST)) p ¢4 0, for the uniform case, where k = k&’ = 1, we find that
Property 3 is satisfied for agent A, since captured([{ng}|x,, B, A, ¢4, k, k') and A
can only verify the signature with uncertified public key for B. Obviously, A later
relies on the server, S, to compare the uncertified key of B with a certified version
that S is capable of retrieving. On the other hand, we find that Property 2 is
satisfied for agent B, since captured({ns}x, .S, B, ¢4, k, k') is true and B can
verify the signature with a certified public key of A. Finally, we also note that
Property 1 is satisfied for the term, {[[{n}|x,, B, ks|}x. with respect to all the
agents in the second protocol except the server, SERV (A, S, ch,ch’).

8 Conclusion

In this paper, we have presented a novel static analysis of PKI-based systems
that captures the property of term substitutions in SPIKY-based specifications.
The analysis was used to formally define the security properties of term secrecy
and peer-entity participation. For the future, we hope to implement the analysis
in some functional language, like SML or OCAML, and we plan then to use the
implementation to verify a number of protocols that use PKIs.

A Static Analysis of PKI-Based Systems 65

References

1. Martin Abadi and Andrew Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proceedings of the 4" ACM Conference on Computer and Communi-
cations Security, pages 36—47, Zurich, Switzerland, April 1997. ACM Press.

2. Samson Abramsky. A domain equation for bisimulation. Information and Compu-
tation, 92(2):161-218, June 1991.

3. B. Aziz. A Static Analysis Framework for Security Properties in Mobile and Crypto-
graphic Systems. PhD thesis, School of Computing, Dublin City University, Dublin,
Ireland, 2003.

4. B. Aziz, G.W. Hamilton, and D. Gray. A denotational approach to the static analysis
of cryptographic processes. In Proceedings of International Workshop on Software
Verification and Validation, volume 118, pages 19-36, Mumbai, India, December
2003. Electronic Notes in Theoretical Computer Science.

5. Benjamin Aziz and Geoff Hamilton. A privacy analysis for the 7-calculus: The de-
notational approach. In Proceedings of the 2" Workshop on the Specification, Anal-
ysis and Validation for Emerging Technologies, number 94 in Datalogiske Skrifter,
Copenhagen, Denmark, July 2002. Roskilde University.

6. Benjamin Aziz, Geoff Hamilton, and David Gray. A static analysis of cryptographic
processes: The denotational approach. Journal of Logic and Algebraic Programming,
64(2):285-320, August 2005.

7. David Gray, Benjamin Aziz, and Geoff Hamilton. Spiky: A nominal calculus for
modelling protocols that use pkis. In Proceedings of the International Workshop on
Security Analysis of Systems: Formalism and Tools, Orléans, France, June 2004.

8. Gordon Plotkin. A powerdomain construction. SIAM Journal on Computing,
5(3):452-487, September 1976.

Subtyping Object and Recursive Types Logically
(Extended Abstract)

Steffen van Bakel* and Ugo de’Liguoro®**

! Department of Computing, Imperial College,
180 Queen’s Gate, London SW7 2BZ, UK
svb@doc.ic.ac.uk
2 Dipartimento di Informatica, Universita di Torino,
Corso Svizzera 185, 10149 Torino, Italy
deliguoro@di.unito.it

Abstract. Subtyping in first order object calculi is studied with respect to the
logical semantics obtained by identifying terms that satisfy the same set of pred-
icates, as formalized through an assignment system. It is shown that equality in
the full first order ¢-calculus is modelled by this notion, which on turn is included
in a Morris style contextual equivalence.

1 Introduction

Subtyping is a prominent feature of type-theoretic foundation of object oriented pro-
gramming languages. The basic idea is expressed by subsumption: any piece of code
of type A can masquerade as a code of type B whenever A is a subtype of B, written
A<:B.

In typed calculi equations are among terms of the same type; since terms may have
several types because of subsumption, it is commonly postulated that if a = b : A and
A<:B then a = b : B (but not viceversa): call this equational subsumption. In the
realm of object calculi, object types are essentially interfaces, and subtyping interface
extension; therefore subsumption is justified by the intuition that any object which is
able to react to messages mentioned in A a fortiori will answer correctly to messages in
the smaller interfaces represented by its supertypes. Similarly equational subsumption is
understood on the ground of contexts separability: a and b are contextually equivalent
at type A if both typeable by A and no context with a hole of type A can take them
apart. This provides an interpretation of subtyping: A<:B should hold if any pair of
terms contextually equivalent at type A cannot be separated at B.

Semantically this is understood in two ways according to the existing literature (see
[10] ch. 10 for a gentle introduction to these approaches): either by means of coercions
[4], or by inclusion of partial equivalence relations as in [5,6] and [1] ch. 14. But coer-
cion semantics does not reflects the actual implementation practice of object-oriented

* Partially supported by the MIKADO project of the IST-FET Global Computing Initiative, no
IST-2001-32222.
** Partially supported by EU within the FET - Global Computing initiative, project DART ST-
2001-33477.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 66-80, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Subtyping Object and Recursive Types Logically 67

languages; on the other hand PER semantics is quite complex to use for reasoning about
programs, and suffers of technical problems which are still open.

We propose a third approach which, in our view, can lead to a simpler logical frame-
work for reasoning about object oriented programs. It is based on the ideas of logical
semantics and domain logic. In the latter perspective the meaning of a term is deter-
mined by the set of the predicates it satisfies, so that two terms are equivalent if they
are indiscernible. To account for equivalence “at” a certain type A we relativize this
form of absolute indiscernibility to sets of predicates indexed over types, calling them
languages. Hence a and b are logically equivalent at type A if they satisfy the same set
of predicates form the language £ 4 associated to A.

For equational subsumption to be sound in our framework, it is needed that some
relation between £, and Lp exists whenever A<:B. Were we about a calculus of
pure objects, such a relation would be simply £L4 2 Lp, and this is clearly enough.
However, since in the present paper we consider a richer calculus with functions and
recursive types, called FOb; ., in [1], this is no longer true in general, and is replaced
by a more complex inclusion relation.

The logical equivalence is indeed the theory of a model. Such a model can be ob-
tained by the filter model construction as in [3], with a more complex structure due
to the presence of types (see [8] and [12]). Here we live aside the investigation of the
model and concentrate on the theory itself, establishing two results: firstif - a < b: A
is derivable in the equational theory of system FOb;..,, then a and b are logically
equivalent at type A; second two terms logically equivalent at type A are contextually
equivalent at the same type. The latter result is a consequence of the characterization of
convergence in terms of derivability of non trivial predicates in £ 4 much as in the case
of A-calculus and intersection types (see e.g. [11]). A similar result was proved for the
type-free ¢-calculus in [7].

Because of the limited space available, proofs are omitted: see [13].

1.1 Related Work

The present paper follows some previous works by the authors in [7,8,12]. The novelty
is subtyping of object and recursive types, while subtyping polymorphism was con-
sidered in [8] for a A-calculus with function and record types only. The idea of using
languages to model types in a filter model originates from [2]: however in Abramsky’s
work the modeling of polymorphism was left out. In this case the predicate languages
cannot be disjoint; moreover they need to have a structure reflecting the subtyping rela-
tion, as stressed above, a topic which has not been addressed in the literature. The theory
of objects in [1] is a natural environment of investigation for the themes we are about
here; Morris style contextual equivalence for first order object calculi is introduced and
studied in [9], where system FOb; ., is considered: this is the reason for the choice of
the same calculus in the present paper.

2 The System FOb; .,

To keep the present exposition self-contained, we recall the definition of the system
FOb; ., of [1]. As usual for polymorphic calculi, we will introduce type and term

68 S. van Bakel and U. de’Liguoro

syntax in two steps: first by defining type expressions (pre-types) and pre-terms, namely
terms decorated by pre-types; types and terms are then defined together with the the type
derivation system as well-formed pre-types and well-typed pre-terms respectively.

Definition 1 (Pre-types and Pre-terms). Let K be a set of type constants, ranged over
by K, and V a set of type variables, ranged over by X, {¢; | i€ N} a denumerable set
of labels, I and J finite subsets of N. The set of rypes 7, ranged over by A, B, C, ...
is defined by the following grammar:

A,B:=K|X |[(i:B; (€D]| A=B | uX.A

The pre-terms of FOb; ., are defined through the following grammar, where ¢ ranges
over constants:

a,bu=x|c| Aztala®) | [l =c(zt)b; C€D] | al
| a.l=c(z)b | fold(A,)\unfold()

A type expression of the shape [¢;:B; (*€1)] is used for an object type; A—B is
the usual functional type and ©X.A is a recursive type: in the latter the type variable X
is bound in A. In the expressions ¢(z)b and Az.b, z is bound in b; free and bound
variables are defined as usual. Types and pre-terms are considered equal modulo a-
conversion, i.e. up to renaming of bound variables.

In [1] the system is defined as the union of several fragments, which we subdivide
into two parts; the first one concerns contexts, types and terms formation':

Definition 2. A context for a type judgement is just a finite set F/ of type-decorated
variables, of the shape z: A.

The system Ag UA, UAQpUA_UAxUA, is given in Figure 1.

FE is a well-formed context if E F < is derivable, and A is a type for a if there exists
E with E | a:A.

The second one is about sybtyping:

Definition 3. The system A .UA_o,UA.. UA-.xUA.., can be found in
Figure 2.

It is understood that such unions produce a set of inductive clauses generating a
unique system where contexts and types in the rules from the first part can be formed
according to the rules of the second part and vice-versa. There is also a certain redun-
dancy: the context F, X is the same as F, X <: Top. In what follows we will use the
generic notation - {- « -} for substitution both of type variables by type expressions and
of term variables by terms, implicitly replacing all occurrences of the first parameter of
{- < -} by the second in the preceding expression; as usual the replacements occur up
to a-congruence to avoid variable clashes.

' As in [1], we will use a short-hand for rules, and write for example

E,z;:Abx bi:B;, (Viel) E,z1:AFs b1:B1 ... E,xn:Abx by:B,
— Ay GeDy g o Ay, GeD,
Etks [El = §(x7;)bz]A EbFx [Zz = §(m1;)bz]A

assuming here that I = {1,...,n}.

Subtyping Object and Recursive Types Logically 69

(Envg). (Enva): (Val) : (Type Const) :
EFA E' x:AE"+o EFo

— (x € dom(E
O+ o E,J::Al—o(? (&) E z:AE"Fx:A EF-K

(Type Object) : (Val Object) : (Val Select) :
EFB;, (Viel) E,xz;:AFb:B; (Viel) EVF a:t;:B; (D]
E+ [&Bz (iEI)] EF [Zz = §($?)bz (iEI)]iA EF a.ﬂj:Bj

(Val Update) :

EraA E,x:Als b:Bj e
I (A=[t:B; €], j€T)
F (atl;=c(z”)b):A

(JeI)

(Type Arrow) : (Val Fun) : (Val Appl) :
E+A E+B E v:AF a:B EraA—B EFbA
E+ A—B Et A z*.a:A—B EF a(b):B
(Env X) : (Type X) :
Eto E . X,E"Fo
X & dom(E S
E,Xm(# dom(E)) E X, E'+FX
(Type Rec) : (Val Fold) : (Val Unfold) :
E,XFA EFaA{X —uX.A} EFapX.A

EtuX.A Erfold(uX.A,a)uX.A EF unfold(a):A{X — puX.A}

Fig. 1. Fragments Ax UA, UAqp,UA_UAxUA,

Definition 4 (Reduction). Evaluating confexts are term expressions with a hole [_], and
are generated by the grammar:

EL) = | E[1.L| E[]L=c(z*)b | E[](a) | unfold(E]]) | fold(A, E[]).

We will wrire &[a] for the replacement of _by a in &.
The one-step reduction relation on terms is the binary relation defined by the fol-
lowing rules:

= (')b (ieI)] _ bj{x] [0 —g(b (161)]}

[0 = ()b CELL =a(@h — [f = o(a)b SV 0 = o(a)]
(Azd.a)(b) — a{x b}

unfold(fold(X,a)) — a

a — b = Ela] — &Y

. * . . o, .
The relation — is the reflexive and transitive closure of — .

The one-step reduction is from [9]. In [1], Ch. 6 the operational semantics of the
object calculi is defined by means of a bigstep predicate a ~~» v, where a is a closed
term, v is a value as it is defined by the grammar:

vu=cl| x| 6 c(z)b; €] | fold(A, v).

K2

70 S. van Bakel and U. de’Liguoro

(Sub Refl) : (Sub Trans) : (Val Subsumption) :
EFA E+-A<:B EFB<:C FraA EFA<:B

FFA< A EFFA<:C EtraB
(Type Top) : (Sub Top) : (Sub Object) :
Ero EFA E+B; (Yiel)
E + Top E+ A<:Top EF [6:B; "€ <: [::B; *€7)
(Sub Arrow) : (Env X <) : (Type X <) :
< : B’ Er-A E', X<:AE"+
E-A<tA EFB<B (X ¢ dom(E)) : i o
E+-A-B<: A'—B E,X<:AFo E X< AFEFX
(Sub X) : (Type Rec<:) :
E. X< AE'Fo E X<:Topk A
E' X<:AE'FX<A EFupuX.A

(Sub Rec) :
EruX. A EruY.B E)Y<:Top,X<:YFA<:B

Er-puX A< uY.B

(JCI)

Fig. 2. Fragments A.,UA_.gpUA.,UAL.xUA,

It is easy to see that a ~» v if and only if & — v. The reduction relation is more general
since it is defined for any term (possibly with free variable occurrences); it is even true
that normal forms are not necessarily values. However it is easy to adapt the arguments
in [1] to establish the following theorem:

Theorem 5 (Subject reduction property of FOb,..,). If E' - a:A is derivable in the
system FOby .., and a — b, then E \= b:A is derivable as well.

We just stress that, consistently with the definition of ~~ in [1], in the clause:
[0 = (2)b VEDL = (2 — [l = o(a7)bs STV £y = (a4)0]

a renaming of the self type of the bound variable 24 into 24 occurs. This is immaterial
in the fragments of the ¢-calculus without subtyping, but it is needed in the presence
of rule (Val Subsumption) since if A = [¢;:B;°<!], and A <: C, then we can give type
C to any term of type A and therefore update a method in an object of type A with
s(z)b; but the result of (naively) performing the update saving the self type C is no
longer typeable, as the selves of the methods now have different types, so that rule
(Val Object) will not apply.

The reduction relation is trivially confluent. Even relaxing Definition 4 and taking
the closure of — under arbitrary contexts would not destroy confluence, as can be
shown e.g. by adapting the Martin-Lof technique for proving the Church-Rosser theo-
rem for the A-calculus. As for typed A-calculi with recursion (e.g. PCF), typed terms do
not necessarily have a normal form: 25 = [¢ = ¢(z#)z.£].0 is typeable by B if A is
any object type [¢:B,...], and it is such that 25 — 2p.

Subtyping Object and Recursive Types Logically 71

3 Predicates and Assignment

In this section we will introduce the syntax of the predicates and an assignment sys-
tem to syntactically derive judgements associating predicates to typed terms under the
assumption of similar judgements about a finite set of typed variables.

Predicates are transparently intersection types for a A-calculus with records, and
come from [7]. The essential difference is that the set of predicates is stratified into
languages (see [8,12]), in such a way that whenever a predicate can be deduced for a
term a, it belongs to the language £ 4 associated with A.

Much in the style of [11], in this section we will present a notion of strict inter-
section types, called strict predicates here; this is a technical choice and a departure
from [12], making the proof theory of the system more manageable, without loss in the
expressivity. Using these, we will define a notion of predicate assignment, which will
consists basically of associating a predicate to a typed term.

Definition 6 (Predicates). Ps, the set of strict predicates, and the set P of intersection

predicates, both ranged over by o, 7, . . ., are defined through:
7)5 =R ‘ (P — Ps) | <£P§> | H(Pq)
P o= (PSl/\.../\PSn) (712 O)

where x ranges over a countable set of atoms. We will write w for an intersection of
zero strict types, and write A,0; for oA ... Aoy, where we assume that each o; € Ps.
Also, rather than (¢:01)A - - - A{C:0,,) we will write (€:01A - - - Agy,) or (£:A,0;), where
n = {1,...,n}; also, rather than (¢1:01)A - - A(€,:0,) where the ¢; are distinct, we
will write (¢;:0;°€2) or (¢;:0; F€D).

Atomic predicates « are intended to describe elements of atomic type in the do-
main of interpretation; c—7 is the property of functions sending element satisfying o
into elements satisfying 7; (¢:0) is the property of records having values that satisfy
o associated with the field /. Predicates w and o AT mean ‘truth’ and ‘conjunction’ re-
spectively. It should be noted that arbitrary intersection predicates like (c—7)A(¢:p)
are allowed by the above definition.

To build a logic of predicates we need a notion of implication, written o < 7, which
is a reflexive and transitive relation on predicates, defined below.

Definition 7 (Predicate pre-order). On predicates a pre-order < is inductively defined
by:

<o;)
e (Vi<n>0) (Vi<n >1)
0 < An0;

plo < o<71t<p o<T oc<T

o=T<p=p o<p (Lo)<(bT) p(o)<p(T)
Finally 0 = 7 <= 0 <7 <. A predicate is trivial if equivalent to w.

Lemma 8. The following rules are admissible

Pk = OkNTk, ifkeIﬂJ,
00 SN A0Sy < (U py, FETUDY, where < pr = 0%, if keI\J,
()AL= < (Chipr) =1 ifkCNT

72 S. van Bakel and U. de’Liguoro

(JC1I)

<£1'Z(71; (i61)> S <£j50'jjej>
Lemma 9. ((;:0;'I) A {(€;:m9€7) = (Uy:py, (KETVDN provided o; = ; fori € IN.J.

Although predicates are basically properties of untyped terms (resulting from typed
terms essentially by erasing type decorations), types are quite relevant in the equational
theory of the FOb .., calculus; this was accounted for in [8,12] by means of the notion
of predicate languages, whose definition easily extends to the present richer syntax.

Definition 10 (Languages). The set of all predicates £ is stratified into a family {£ 4} 4
of sets of predicates called languages, indexed over closed types such that:

1. for every k, there exists exactly one K € KC such that k € L;
2. L4 is the least set (including atoms if A = K) such that

o,€Ls (Vien) oely T7ELp OTELAX —iux.A}
n>0

Ao €LY c—T17€LA B plo)eLyx.a

oc€LaB;

— (A=[;:B; (el ,j€l, 0P,
(ljio)ely [g :)

The intuition behind languages is the following. Properties in £4 give some infor-
mation about values of type A; to be a value of type A should then imply to enjoy at
least a non-trivial property in £ 4. That two values are logically equivalent at type A
means that they satisfy the same set of properties in that language; consistently ETop
is the set of trivial types. A natural question is whether there exists a relation between
languages and the subtyping relation, which is partly answered in the following propo-
sition, for which we recall the definition of the Egli-Milner preorder over the powerset
of any preordered set (X, <):if U,V C X then

ULl VesVuelU weViu<ov&YweV el u<o.

Proposition 11. Let A and B be closed type expressions not including recursion and
such that - A <: B then:

1. if A and B are object types then Ly C L 4;
2. if A and B are either object or arrow types then £4 C% L.

We say that L is a restriction of L4 when L4 C! £p. Note that, since w € Lp
for any B (take n = 0 in the rule about intersection in Definition 10) and 0 < w for
all o, we have that Lp C L 4 implies £ 4 Cl L. If L4 T8 L then £ is weaker than
L 4: we speak of restriction, since its discriminating power is less than the power of £ 4,
as it is immediately clear when L C £ 4. This makes languages and restriction good
candidates for modelling types and subtyping relation respectively.

The proof of Proposition 11 is by induction on the derivation of - A <: B and does
not need to take the context into account at any step because of the assumptions; this is
no longer true when recursive types are considered.

Subtyping Object and Recursive Types Logically 73

Definition 12. A map 7 from type variables to closed types is called a type-environment.
For F a well-formed context, we say that iy respects the context E if forany X <: A € E
(if X € E thenitis read as X <:Top € E) it is the case that £, x) Ct L, 4y, where
n(A) is the value of application to A of the obvious extension of 7 to the set of types.

Theorem 13. If £+ A<: B, then for any type-environment) that respects E we have
Loy E Lyp)-

We are now in place to introduce the main tool in the present work, namely the
assignment system. It is a formal system to derive judgments of the form a:A: o, whose
intended meaning is: the denotation of a satisfies the property o when seen as a value
of type A (here a “value” could be the undefined object in the domain of interpretation:
we shall see that in such a case ¢ has to be trivial).

Definition 14 (Statements, bases, compatibility).

1. A statement is an expression of the shape a:A: o, where a is a term, A is a type for
a, and o is a predicate, and a is called the subject of this statement.

2. A basis I' is a finite set of statements with only (distinct) term variables as subject.

3. Fora basisAF, we say that F fits into I', written E<I’,if x:A:oc € 'implies z:A€ E.
We write I for the largest context that fits into .

4. We say that two bases [, I'] are compatible if there exists a context £ including
all variables occurring in both I and I, fitting into both of them.

5. We say that I" preserves languages if o € L, 4y whenever z:A:0 €' and 7 is a

type-environment respecting I.
6. We extend < to bases by: IV < I if and only if for every z:A:0 €' there exists
z:A:0’ €I such that o’ < 0.

Definition 15 (Predicate Assignment). The predicate assignment system to
derive judgments of the form I'F a:B:0 where I' is a basis preserving languages,
a aterm, A a type and o a predicate is defined in figure 3.

Lemma 16. 1. The rules

I'ta:A:c o<r71 I'ta:Aio o< T'FA<:B
and (r€Lp)
I'a:A:r I'-a:B:7

are admissibie.
2. If '+ a:A, ' A<: Band I' b a:B:, then there exists 0 € L A such that o < T
and '+ a:A:o.

4 Subject Reduction and Expansion

A minimal requirement for soundness of the assignment system is that predicates are
invariant under reduction. This is established through the following result.

74 S. van Bakel and U. de’Liguoro

(Val z) : (<o) - .
(z:B:rel,7<0) I'ra:B:o I'FB<:C cr

I'taz:B:o I'acC:o (0€Le)

(Val Fun) : (Val Appl) :
I'rz:A:t-a:B:o I'-a:A—B:t—oc I'bFbA:T

' Azt a:A—B:it—o I'ta(b):B:o

(Val Fold) : (Val Unfold) :
I'aA{X —uX.A}:o ' auX.A:u(o)

I'fold(uX.A,a):uX.A:p(o) I' - unfold(a): A{X = uX.A}:0
in the next rules A = [¢;:B; (i€ I)}
(Val Select) : (Val Object) :

I'ta:A:{ljir—0o) T'FaA:r Iz Aimi B bi:Biioy (Viel) Gen

- S
I'ad;:Bj:o Tl = ()b CEDA: (01— 05) J

(Val Update,) : (Val Update,) :

I'ta:A:oc I y:AipkEb:Bj:T I'-aA:{lj:o) I,y:Apbkb:B;:T (i 4)

t77J
' (a.j =c(y™?)b):A: (£j:p—T) I'F (a.li=c(y™)b):A: (£;:0)
EraB I'+a:B:o; (Vi€en)
— (E<I) (N n>1
(w)Fl—a:B;w(<) () F"CLZBZ/\EO'i (-)

Fig. 3. Predicate Assignment

Theorem 17 (Subject Reduction). If I'+a:A:p, anda — d, then '+ a’:A:p.

Example 18. To better appreciate the importance of this standard result in the present
setting, we review an example given in [12].

Suppose that A = [lo:Int, ¢1:Int] and a = [{y = s(x*)1, 41 = ¢(z?)x.4y] (using a
constant 1 of type Int), so that in FOb; .., we have I a:A. Then

(Val x) (w)
z:A:(lo:w—0) F z:A: (£o:w—0) x:A:(lo:w—0) F z:A:w
(Val Select)

z:Aw F 1:Int:O x:A:(lo:w—O0) F z.o:Int:O
Fa:A: {(lo:w—0, l1:(lg:w—0)—0)

(Val Object, AI)

where £ is a field, ¢, is the method get/ly, and O € Ly, is the predicate of be-
ing an odd integer. Using rules (Val Update,), (Val Update,) and (Al) one can derive
(the seemingly incorrect):

Subtyping Object and Recursive Types Logically 75

Fa:A:(ly:w—0, {1:{ly:w—0)—0) y:Aw b 2:Int:E
F (a.ly=c(y™)2):A: (ly:w—E, l1:(£y:w—0)—0)

where E € Ly, is the predicate of being an even integer. This makes sense, how-
ever, since it simply states that if the value at ¢ is an odd integer, then the method ¢,
will return an odd integer; it also states that this is vacuously true of the actual object
a.lo=c(y?)2, since it has an even integer at £y. As a consequence of Theorem 17 we
also know that this is harmless: indeed (a.lp=c(y*)2).6; — 2 and we clearly as-
sume that I/ 2:Int : O, so by contraposition I/ (a.ly=¢(y*)2).¢;:Int : O. As a matter
of fact, rule (Val Select) is not applicable, since I (a.fg=¢(y*)2):A : (£g:w—0).

On the other hand, the following odd-looking assignment is legal as well, this time
by rule (Val Object) and (Al):

x:A:{(lg:w—E) F 2:A: ({g:w—E) x:A:(lpw—E) F x:A:w
x:Aw b 1:nt:O x:A:{(lg:w—E) b (x.4y):Int: E
a b A:(ly:w—0, ly:(ly:w—E)—E)

In the last case, however, the apparently odd predicate we deduce is of use to con-
clude as before:

Fa:A: (ly:w—0, l:(ly:w—E)—E) y:Aw b 2:Int: E
(a.lo=c<(y™)2) F A:(ly:w—E, {1:{g:w—E)—E)

which is what we expected.

The invariant property of predicates w.r.t. reduction is stronger as they are preserved
even by expansion, as is the case for standard intersection type assignment systems (see
e.g. [3,11]). However we have to be careful, since the simply typed A-calculus is a sub-
calculus of FOb; .., for which it is known that subject expansion does not hold. In fact
we can prove - (A\zA~A.z)(Azt .2):A—A:o—a,but I' I/ yy{y < (\oC.2)}: A=A -
o—ao, since there is no way to derive a type for yy for any choice of I" and C.

As a matter of fact, subject expansion does hold for predicates whenever it is the
case for types, and this suffices for giving semantics to typed terms consistently with
the restriction of convertibility relation to terms of the same type.

Theorem 19 (Subject Expansion). If 't a:A:7, and o' is such that I' - a':A and
a — a, thenl'Fa :A:T.
5 The Logical Equivalence

The assignment system of Definition 15 induces a logical notion of equivalence, ac-
cording to which a and b are equal at A if they can be assigned the same set of

76 S. van Bakel and U. de’Liguoro

predicates from L 4. By extending this notion to open terms, we arrive at the following
definition.

Definition 20 (Logical Equivalence).
Let a and b be terms such that E + a:A and E F b: A; we define

la:A]lp ={c€ L] AT =E & I't+a:A:o)}.
We then say that a and b are logically equivalent at A and environment F if
EtraA EtFbAand [a:A]p = [0:A] 5,
and write a ~% b : A.

Notice that, if the basis I" respects languages, the requirement o € L 4 in the above
definition is clearly redundant. Logical equivalence is the theory of a model built out of
predicates, where the denotation of a term is exactly the set of its properties: i.e. the fil-
ter model [3]. It can be constructed along the lines of [12], even if the type interpretation
cannot be the same, because retractions do not model subtyping. We leave this investi-
gation to further study, and concentrate here on the properties of logical equivalence.

A notion of equivalence among terms of the FOb, ., is defined via a system deriv-
ing statements of the shape a < b : A, meaning that terms a and b are equal at type A;
the system A_UA_, UA_.UA__,UA_gpUA_,, is shown in Figure 4, where with
respect to the original system in [1], we have omitted the obvious rules, like (Eq Appl),
and extensionality rules (called (Eval Eta) and (Eval Fold), respectively).

Such a notion includes (typed) convertibility but it does not coincide with it: in
fact ‘>’ is a congruence whereas *° — ’ is not closed under arbitrary contexts; more
importantly, this is a consequence of subtyping and precisely of rule (Eq Sub Object)

(Eval Beta) : (Eq Subsumption) : (Eq Top) :
EF) 0:A—-B EFaA Etae—d:A E-FA<-B FEraA EFRbB
E+ (Az?b)(a) & b{za}: B Era<ad:B Eta«<b:Top

(Eq Select) : (Eq Update) where A = [;:B; (<€1)]:
EFaHa/:[Zi:BiiEI}(‘ N Etra«ad:A ErnArb—b :B;
€
EFal, —=d it B ° EFalj=c@ b d =z : A

(jel)

(EV3| Select) where I N J = @, A= [&Bl ie[], A= [EIBZ ieIUJ], a= [fl = §($;4)bl ie[} :
EFaA
el
E+ a.éj — b]'{ﬂﬂj <—¢a} : Bj
(Eval Update) where INJ = 0, A = [¢;:B; '], A’ = [¢;:B; *€'Y), a = [t; = ¢(x?)b; €]
EraA E x:AF b:Bj (
Etal; =z o [t; = ¢(a”)b, t; = ¢(z*)by TETVNID]: 4

jeJd)

Fig. 4. The equation system A=U A=zU A=< U A="U A_qgp U A=,

Subtyping Object and Recursive Types Logically 77

(see the next example). Therefore, from the subject reduction and expansion theorems
it does not follow that equality implies logical equivalence.

Example 21. Consider the terms (where A = [{y:Int, {1 :Int])
a =l =M1, =c(zM1],b = [l = (a1, 6 = s(zf)z.Lp).

In [1], Section 7.6.2 it is argued that they cannot be equated at A. Indeed, they are
not logically equivalent at A since, if we assume that 1 is the predicate expressing the
property of “being the number 17, s0 1 € Ly,;, and + 1:Int:1, then - a:A: ((1:w — 1)
but t/ b:A:(¢1:w — 1). Indeed (omitting some parts of the derivation for readability):

z1:Aw F L:Int: 1
Fad:{t;:w—1)

(Val Object)

Replacing a by b would not yield a valid derivation. The best we can do in the case of b
is instead:

x1:A:(lp:w—1) F a1 A (ly:w—1) x1:A:(lpw—1) Fap:Arw
x1:A:(ly:w—1) @y Lo:dnt: 1
FbA:(l1:{lg:w—1)—1)

(Val Select)

(Val Object)

To express this in natural language, what we have proved is that the value of a on calling
method ¢ is 1, and that this is a “field”, in that it does not depend on other parts of a;
on the other hand, for b the value returned by ¢; depends on the actual value of ¢ in b:
the predicate (¢1:(fy:w—1)—1) expresses this.

However, in [1] paragraph 8.4.2 is observed that the equality - a < b: [{y:Inf] is
derivable since both

F o = s(z8)1] < a: [lo:dnd] and F [l = ¢(xF)1] < b : [ly:Ini]

can be obtained by rule (Eq Sub Object); this clearly shows that ‘-’ is not convert-
ibility, since a, b and [fy = <(x)1] are distinct normal forms and the reduction is
confluent.

In our setting, we can show that a ~5 b : [(o:Inf] as well, and this is the effect of
restricting to the language E[ZO: Int)’ in fact the only non-trivial predicates in E[éo: Int)
that we can derive for either a or b are (£y:w—1) (or greater than this w.r.t. <).

Theorem 13 is a first evidence of the consistency of the predicate assignment system

with respect to the subtyping relation. It is however not enough, and we need to establish
the following.

Corollary 22. Ifa~%b: Aand E - A<:B then a ~% b : B.
We conclude this section by establishing that equality in FOb; ., system implies

logical equivalence, proving that what we have seen in the Example 21 actually holds
in general.

Theorem 23. If E-a < b: Athena ~%b: A

78 S. van Bakel and U. de’Liguoro

6 Observational Semantics and Adequacy

Observational semantics for the FOb; .., calculus has been defined in [9] in Morris-
style, called there “contextual equivalence”. In the same paper it has been shown that
it coincides with a notion of bisimulation which is stronger than ‘«-’. We will adopt a
slightly more general definition (we will write a* for a closed term a such that - a:A).

Definition 24 (Convergence). Given any (well formed) closed term a* we say that it

converges to value v, written a |} v, if a =, v. Moreover we say that a?t is convergent
(a |}) if there exists a value v such that a |} v.

We will write - :A - C[]:B to express that the closed context C[] is well typed
with type B, under the assumption that the “hole _” has type A; Cla] is the result of
replacing ‘_’ by a in C[].

Definition 25 (Observational Equivalence). Two closed terms a and b are called ob-
servationally equivalent at type A, written a ~9 ~% b, if both a? and b4, and for any
ground type K and value vy it is the case:

VC[]. _:AF CLJ:K = (Cla] vk < C[b] § vk).

This differs from definition of contextual equivalence in [9] in some respect. First,
we consider contexts of any ground type as an “experiment”; moreover, we do not
consider reduction rules for constants as “if then else”; as a consequence we cannot
discriminate between different constants like true and false. It is for that reason that we
use in Definition 20 the predicate a |} v instead of a) .

We claim that, when restricted to closed terms, logical equivalence is included in
observational equivalence. To this aim we establish an adequacy result of the logical
semantics w.r.t. convergence, by means of a realizability interpretation of predicates,
proving that the characterization results of [7] are preserved in the typed context of the
calculus FOb1 ..

In the next definition the set of labels of A is defined as Label(A) = {¢; | i € I}
only for A = [¢;:A; (€D)]; it is empty in all other cases. If a®* for some object type
A, {; € Label(A) and a || [¢; = (z{)b; *€D), then, for any c*, a.f(c) abbreviates
bi{z;—c}.

Definition 26 (Realizability Interpretation). The realizability interpretation of the
predicate o is a set [o] of closed terms defined by induction over the structure of pred-
icates as follows:

Jxl={a® ke Lk & . Fv: K k& al}v}

Jo—1] ={a*78 | 3z,b. a I (A\z?.b) & VA 6[[1. o{x—c} € [7]},
[[(Eaﬂﬂ]]*{a’ﬂal} & € € Label(A)&VcA € [o]. al(c) € [7]},
PO = A [0 (X ALD) & bagx sy € Do),

- [w]l = {a” | Aisatype},

. Nonr] = [o]l N 7]

ANk W=

The next lemma says that [o] is closed under reduction and expansion for any o.

Subtyping Object and Recursive Types Logically 79

Lemma 27. Ifa® € [o] then for any b ifa — borb —— a then b* € [o].
Lemma 28. If o < 7 then [o] C [7].

Theorem 29 (Realizability theorem). Let ¥ be any closed substitution, and a be
the effect of applying ¥ to a (with usual conventions to avoid free and bound variable
clashes) . If I' - a:A:o and for all x:B:T €T it is the case that ¥(x) € [7], then
a? € [o].

It is easily seen that values v can be assigned non-trivial predicates, so that a |} v
implies that the same predicates can be derived for a because of Theorem 19; on the
other hand a straightforward induction shows that if o is non trivial, then any a* € [o]
converges: by this and Theorem 29 we obtain a proof of the following corollary.

Corollary 30 (Characterization of convergence). Let a** be any closed term: then a |}
if and only if & a:A:o for some non trivial o.

Theorem 31 (Logical Equivalence and Observational Equivalence). Suppose that
for any value v of ground type K we have exactly a non trivial predicate . € Ly, that
this predicates are distinct for different values and that - v : K : k is assumed for each
v. Then for any a®* and b, ifa ~* b: A then a ~9 b.

7 Concluding Remarks

By using bisimulation and its coincidence with observational equivalence, in [9] it is
shown that, taking a and b as in example 21, a z[czl Ini] b. This is intuitively clear: the
only way to separate a from b is to change the value of ¢y, since then the fact that b./;
depends on such a value while a./; does not, becomes apparent; but the overriding of
£ is inhibited in contexts with the hole of type [¢;:Int], where £, is hidden.

It is not true, however, that a ~* b : [¢,:Int], because the predicate (¢;:w—1) is in
E[01:Int]’ itis derivable for a even at type [¢;:Int] but cannot be derived for b at any type.

That language inclusion is not sufficient to account for subtyping of object types,
while it is for record types (see [8]) is the essential reason for the presence of rule
(Val Select) in our system. It is reasonable to think that the failure of equivalences like
a ~* b: [¢1:Int] from example 21 depends on the fact that no rule accounts for the
hiding effect of subtyping in the case of object types. One possibility for coping with
such a limitation is the following rule:

INJ=0, A=[{;:B; ieIUJ}7 A’ = [4;:B; ieJ]7 (6:7—p)€La
IFaA:(l: (o SOAT—p) T a:A: (b0 1)
't a:A":(t:r—p)

This rule formalizes the idea that when A<: A’ and A and A’ are object types, the
methods of any object of type A not mentioned in A’ are hidden: therefore if a satisfies
the premise of any arrow predicate concerning the hidden part, this will never change
in contexts of type A’, in such a way that the latter premise can be discharged. Clearly,

80

S. van Bakel and U. de’Liguoro

with reference to the example 21, by this rule one can derive + b:[¢;:Int]:{¢1:w—1),
which makes a and b logically indiscernible at type [¢; : Inz].

The soundness with respect to observational equivalence of the system resulting by

adding such a rule to the predicate assignment system can be proved by means of a
modified realizability interpretation of predicates, but at the time of writing we do not
know to what extent it actually solves the problem.

References

1.
2.

3.

4.

10.
11.

12.

13.

M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.

S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic, 51:1-77,
1991.

H. P. Barendregt, M. Coppo, and M. Dezani. A filter lambda model and the completeness of
type assignment. Journal of Symbolic Logic, 48:931-940, 1983.

V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance as implicit coer-
cion. Information and Computation, 93:172-221, 1991.

. K. B. Bruce and G. Longo. A modest model of records, inheritance and bounded quantifica-

tion. Information and Computation, 87:196-240, 1990.

. K. B. Bruce and J. C. Mitchell. Per models of subtyping, recursive types and higher-order

polymorphism. In Proc. of POPL, 1992.

. U. de’Liguoro. Characterizing convergent terms in object calculi via intersection types. Lec-

ture Notes in Computer Science, 2004:315-328, 2001.

. U. de’Liguoro. Subtyping in logical form. In /ITRS’02, ENTCS 70. Elsevier, 2002.
. A. Gordon and G. Rees. Bisimilarity for first-order calculus of objects with subtyping. In

Proc. of POPL’96, pages 386-395, 1996.

J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science,
151(2):385-435, 1995.

S. van Bakel and U. de’Liguoro. Logical semantics of the first order sigma-calculus. Lecture
Notes in Computer Science, 2841:202-215, 2003.

S. van Bakel and U. de’Liguoro. Subtyping object and recursive types logically.
www.dl.unito.it/~deligu/papers/, July 2005.

The Language X': Circuits, Computations
and Classical Logic
(Extended Abstract)

Steffen van Bakel''*, Stéphane Lengrand?, and Pierre Lescanne®
1 Department of Computing, Imperial College London,
180 Queen’s Gate London SW7 2BZ, U.K
svb@doc.ic.ac.uk
2 School of Computer Science, University of St Andrews, North Haugh, St Andrews
Fife KY16 9SS, Scotland
SL@dcs.St-Andrews.ac.uk
3 Ecole Normale Supérieure de Lyon, 46 Allée d’Italie,
69364 Lyon 07, France
Pierre.Lescanne@ens-lyon.fr

Abstract. We present the syntax and reduction rules for X', an untyped language
that is well suited to describe structures which we call “circuits” and which are
made of parts that are connected by wires. To demonstrate that X gives an expres-
sive platform, we will show how, even in an untyped setting, that we can faithfully
embed algebraic objects and elaborate calculi, like the naturals, the A-calculus,
Bloe and Rose’s calculus of explicit substitutions Ax, and Parigot’s Ap.

1 Introduction

In the past, the study of the relation between computation, programming languages and
logic has concentrated mainly on natural deduction systems. In fact, these carry the
predicate ‘natural’ deservedly; in comparison with, for example, sequent style systems,
natural deduction systems are easy to understand and reason about. This holds most
strongly in the context of non-classical logics. For example, the relation between Infu-
itionistic Logic and the Lambda Calculus (with types) is well-studied and understood,
and has resulted in a vast and well-investigated area of research, resulting in, amongst
others, functional programming languages. In an other direction, the deep study of se-
quent calculus resulted in Linear Logic.

Expressing classical logic in a natural deduction system comes with handicaps. This
can be observed by looking at [20], where Gentzen commented that even his intuition-
istic Natural Deduction calculus “lacks a certain formal elegance”, while its Classical
counterpart fares still worse, breaking the symmetry between the introduction and elim-
ination rules. Because of these technical difficulties, Gentzen found that to achieve the
main results of [19], “I had to provide a logical calculus especially suited to the purpose.
For this the natural [deduction] calculus proved unsuitable.”

* Partially supported by Ecole Normale Supérieure de Lyon, France.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 81-96, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

82 S. van Bakel, S. Lengrand, and P. Lescanne

In this paper, we will try and break a spear for the sequent-style approach, and make
some further steps towards the development of a programming language based on cut-
elimination for the sequent calculus for classical logic. Essentially following [17], we
will present a language called X’ that describes circuits, and its reduction rules that
join circuits. The logic we will consider contains only implication, but that is mainly
because we, in this initial phase, aim for simplicitly; cut-elimination in sequent calculi
is notorious for the great number of rules, which will only increase manifold when
considering more logical connectors.

To break with the natural deduction paradigm comes with a price, in that no longer
abstraction and application (corresponding to introduction of implication and modes
ponens) are the basic tools of the extracted language. In fact, the language we obtain is
more of a continuation style, that models both the parameter as well as the context call.
However, abstraction and application can be faithfully implemented, and we will show
how X can be used to describe the behaviour of functional programming languages at
a very low level of granularity.

X as a Language for Describing Circuits. The basic pieces of X' can be understood
as components with entrance and exit wires and ways to describe how to connect them
to build larger circuits. Those component will be quickly surveyed in the introduction
and receive a more detailed treatment in Section 2. We call “circuits” the structures we
build, because they are made of components connected by wires.

X as a Syntax for the Sequent Calculus. Starting from the proof of Dragalin [12],
Herbelin proposed in his PhD [15] a Curry-Howard correspondence; this was more
elaborated in [9] leading to the definition of the language Ap.fi. Among other approaches
we need to mention [14,10,11,7]; more generally, this work has connections with linear
logic [13]. The relation between CBN and CBV in the context of A\pjii was studied in
detail in [23].

The origins of the language X we discuss in this paper lie in an observation made
on the structure of derivations in Auf in [9]. This that was picked up by Lengrand [17],
who introduced &X' and investigated in-depth the relation between X and Apji. Later it
became apparent that A" also has strong connections with the notations for the sequent
calculus as presented first by Urban in his PhD thesis [22]. With respect to [22] an
improvement of this paper is to make the notation more intuitive and readable by mov-
ing to an infix notation, and to insist on the computational aspect. This is achieved by
studying X in the context of the normal functional programming languages paradigms,
but, more importantly, to cut the link between X and Classical Logic, in that we also
consider circuits that do not correspond to proofs.

This main step forward with respect to previous work is achieved by moving to an
untyped language (both [17] and [22] consider only well-typed objects) which serves
as an expressive framework for representing the untyped lambda calculus, the untyped
calculus of explicit substitutions and the untyped language Apfi. In particular, in our
setting we can model infinite computations.

In the future, we aim to study X outside the context of Classical Logic in much the
same way as the A-calculus is studied outside the context of Intuitionistic Logic.

The Language A" Circuits, Computations and Classical Logic 83

X as a Fine Grained Operational Model of Computation. When taking the the A-
calculus as a model for programming languages, the operational behaviour is provided
by B-contraction. As is well known, G-contraction expresses how to calculate the value
of a function applied to a parameter. In this, the parameter is used to instantiate occur-
rences of the bound variable in the body via the process of substitution. This description
is rather basic as it says nothing on the actual cost of the substitution, which is quite high
at run-time. Usually, a calculus of explicit substitutions [8,1,18,16] is considered better
suited for an accurate account of the substitution process and its implementation. When
we refer to the calculus of explicit substitution we rather intend the calculus of explicit
substitution with explicit names Xx, due to Bloo and Rose [8]. Ax gives a better account
of substitution as it integrates substitutions as first class citizens, decomposes the pro-
cess of inserting a term into atomic actions, and explains in detail how substitutions are
distributed through terms to be eventually evaluated at the variable level.

In this paper, we will show that the level of description reached by explicit substitu-
tions can in fact be greatly refined. In X', we reach a ‘subatomic’ level by decomposing
explicit substitutions into smaller components. At this level, the calculus X explains
how substitutions and terms interact.

The calculus is actually symmetric [5] and, unlike Ax where a substitution is ap-
plied to a term, a term in X can also be applied to a substitution. Their interaction
percolates (propagates) subtly and gently through the term or substitution according to
the direction that has been chosen. We will see that the these two kinds of interaction
have a direct connection with call-by-value and call-by-name reduction, that both have
a natural description in X'.

A notion of principal contexts for X’ has been defined in [4]; a tool [3,4] to study
X has been developed (see http://www.doc.ic.ac.uk/~jr200/X) that allows to
input circuits from X" and have fine control over reduction.

The Ingredients of the Syntax. It is important to note that X' does not have variables!
—like the A-calculus or \ujfi— as possible places where terms might be inserted; instead,
X has wires, also called connectors, that can occur free or bound in a term. As for the
A-calculus, the binding of a wire indicates that it is active in the computation; other
than in the \-calculus, however, the binding is not part of a term that is involved in the
interaction, but is part of the interaction itself.

There are two kinds of wires: sockets and plugs (corresponding to variables and co-
variables, respectively, in [23]) that are reminiscent of values and continuations. Wires
are not supposed to denote a location in a term like variables in the A-calculus. Rather,
they can be connected with wires in other components.

One specificity of A’ is that syntactic constructors bind two wires, one of each kind.
In X, bound wires receive a hat, so to show that = is bound we write Z [24,25]. That a
wire is bound in a term implies, naturally, that this wire is unknown outside that term,
but also that it ‘interacts’ with another ‘opposite’ wire that is bound into another term.
The interaction differs from one constructor to another, and is ruled by basic reductions
(see Section 2). In addition to bound wires an introduction rule exhibits a free wire, that
is exposed; this can correspond to the creation of the wire, which is then connectable.

! We encourage the reader to not become confused by the use of names like z for the class of
connectors that are called plugs; these names are, in fact, inherited from Apfi.

84 S. van Bakel, S. Lengrand, and P. Lescanne

Contents of this Paper. In this paper we will present the formal definitions for X, via
syntax and reduction rules, and will show that the system is well behaved by stating a
number of essential properties. We will define a notion of simple type assignment for
terms in X, in that we will define a system of derivable judgements for which the terms
of X are witnesses; we will show a soundness result for this system by showing that a
subject-reduction result holds.

We will also compare X with a number of its predecessors. In fact, we will show
that a number of well-know calculi are easily, elegantly and surprisingly effectively im-
plementable in X. For anyone familiar with the problem of expressibility, in view of
the fact that X is substitution-free, these result are truly novel. With the exception of
the calculus Apujfi, the converse is unobtainable. This can easily be understood from the
fact that the vast majority of calculi in our area is confluent (Church-Rosser), whereas
X is not.

2 The X -Calculus

The circuits that are the objects of X" are built with three kinds of building stones, or
constructors, called capsule, export and mediator. We define an operator cut, which is
handy for describing circuit construction, and which will be eliminated eventually by
rules. In addition we give congruence among circuits.

2.1 The Operators

Circuits are connected through wires that are named. In our description wires are di-
rected: we know in which direction the ‘ether running through our circuits’ moves, and
can say when a wire provides an entrance to a circuit or when a wire provides an exit.
Thus we make the distinction between exit wires which we call plugs and entry wires
which we call sockets; we will use the word connectors for either sockets or plugs.
When connecting two circuits P and () by the operator we may suppose that P
has a plug o and @ has a socket which we want to connect together to create a flow
from P to @). After the link has been established, the wires have been plugged, and the
names of the connectors are forgotten; in fact, those names are bound in the link. We
use the “hat”-notation to express binding, writing & to say that x is bound, keeping in
line with the old tradition of Principia Mathematica [24]. The notion of free and bound
connectors is defined as usual. We will normally adopt Barendregt’s convention (called
convention on variables by Barendregt, but here it will be a convention on names). An
exception to that convention is the definition of natural numbers in Section 3.

Definition 1 (Syntax). The circuits of the &’-calculus are defined by the following
grammar, where z,y, . .. range over the infinite set of sockets, and «, (3, ... over the
infinite set of plugs.

P,Q == (y.p) | xPa-B | Pa [y] 2Q | Patz@

Notice that, using Barendregt’s convention, for example, the connector «v in Pa [y] ZQ
is supposed not to occur free in Q.

The Language A" Circuits, Computations and Classical Logic 85

Diagrammatically, we represent the basic circuits as:
ot (Gt MR ()

2.2 The Reduction Rules

The calculus, defined by the reduction rules below, explains in detail how cuts are dis-
tributed through circuits to be eventually erased at the level of capsules.

It is important to know when a connector is introduced, i.e. is connectable, i.e. is
exposed and unique; this will play an important role in the reduction rules. Informally,
a circuit P introduces a socket = if P is constructed from subcircuits which do not
contain x as free socket, so x only occurs at the “top level.” This means that P is either
a mediator with a middle connector [z] or a capsule with left part . Similarly, a circuit
introduces a plug « if it is an export that “creates” « or a capsule with right part o. We
say now formally what it means for a terms to introduce a connector.

Definition 2 (Introduction).

P introduces z: P = (z.0) or P = Ra [z] yQ, with z € f5(R, Q).
P introduces a: P = (y.a) or P = xQﬂ a with a € fp(Q).

We first present a simple family of reduction rules, that specify how to reduce a cut with
sub-circuits that both introduce the connectors mentioned in the cut.

Definition 3 (Logical Reduction). Assume that the terms of the left-hand sides of the
rules introduce the socket x and the plug o.

(var) : (g.a)& {(z.f) — (y. >

(exp) : yPp-c)atz(zy) — yPﬂ gl

(med) = (y. Q)G 12(QB [2] ZR) — QB [y] 2R
(ins): (GPB-a)at#(QF [a] ZR) — QvaPﬂTzR

The diagrammatical representation of these rules is given in Figure 1

Notice that, in rule (ins), in addition to the conditions for introduction of the con-
nectors that are active in the cut (o € fp(P) and = € f5(Q, R)) we can also state that
BEfp(Q)\{~}, as well as that y € fs(R)\{z}, due to Barendregt’s convention.

Still in rule (ins) the reader may have noticed that we did not put parenthesis in
the expression Q¥ T P 2R, which therefore is officially not a circuit. Instead, we
should have given both the circuits (Q7 | yP) B TZR and Q7 t @(PB T ZR) as result of
the rewriting. However there is, in fact, a kind of associativity at play which means that
we can omit the parenthesis; this will be made more clear in the next section.

We now need to define how to reduce a cut when one of its sub-circuits does not
introduce a connector mentioned in the cut. This requires to extend the syntax with two
new operators that we call activated cuts:

Pu=...| Pa/zQ | PaxzQ

86 S. van Bakel, S. Lengrand, and P. Lescanne

—_— y»DB>
xR

["*Da» . e A Z>RJ — Me %1l *-r
Cor s o i) — (o 5)

Fig. 1. The diagrammatical representation for the logical rules

(y’D o a @ nh

[y>P ﬁ» 0(» 0(».7) x»l:l’}/»

—/

—

Definition 4 (Activating the cuts).

(act-L) : Pa17Q — Pa/7Q, if P does not introduce o
(act-R) : Pa1zQ — PaXzQ, if Q does not introduce x

Notice that both side-conditions can be valid simultaneously, thereby validating both
rewrite rules at the same moment. This gives, in fact, a critical pair or superposition
for our notion of reduction, and is the cause for the loss of confluence. This notion of
activation is related to the notion of colour in [11].

Circuits where cuts are not activated are called pure (the diagrammatical represen-
tation of activated cuts is the same as that for not activated cuts). Activated cuts are
propagated through the terms, to reach a position where a logical rule can be applied.

Definition 5 (Propagation). The rules of propagation are given in Figure 2.

We will now define how to propagate a cut through sub-circuits. The direction of
the activating shows in which direction the cut should be propagated, hence the two sets
of reduction rules.

We will subscript the arrow that represents our reduction to indicate certain sub-
systems, defined by a sub-reduction: for example, we will write —, for the reduction
that uses only rules in Left propagation or Right propagation. In fact, —, is the reduc-
tion that pushes / and X inward.

The rules (L2) and (R3) deserve some attention. For instance, in the left-hand side
of (L2), « is not introduced, hence o occurs more than once in ﬂQE -a, that is once after
the dot and again in (). The occurrence after the dot is dealt with separately by creating
the new name ~. Note that the cut associated with that v is then unactivated; this is
because, after the activated cut has been pushed through §(Qa 7 ZP)3-v (so leaves a
circuit with no activated cut), the resulting term @RB\ -v)7 t P needs to be considered
in its entirety: although we now that now + is introduced, we do not know if z is. So, in
any case, it would be wrong to activate the cut before the result of Q& /ZP (i.e. R) is
known. The same thing holds for z in (R3) and a new name z is created and the external
cut is unactivated.

The Language A" Circuits, Computations and Classical Logic 87

Left propagation
(dv) : (y.a)a’zP — (y.a)atzP
(L1) : @’I\J.B)&fﬁp — (y.8), ~ B+«
(L2): (JQB-)a/ TP — (A(Qapr)f YVATZP, v fresh
(L3): @FQRE)a&/ TP — §(Qa/TP)B, v #a
(L4) : (QB [Az} JR)Q/ TP — (Qa/‘mp)é[2] y(Ra/TP)
(L5): (QBtyR)A/zP — (Qa’/zP)3ty(Ra’szP)
Right propagation
(dr) : Paxz{z.[) — Patz{z.)
(R1) : Paxz(y.f) = (y.6), ~ y#a
(R2): PAAG(IQ-) — §(PANTQ)F
(R3) : PaXxz(QpB [z] yR) — PaTz((Pa’\mQ) [2] y(PQXZR)), z fresh
(rR4) : Pa’\f(QB [2] yR) — (Pa\xQ)ﬂ[| y(PaxzR), 24T
(R5) : PAXZ(QBTHR) — (P&\;?Q)ET@(P&\%R)

Fig. 2. The propagation rules

2.3 Structural Congruences

By viewing X" as a calculus, a natural questions to ask, and which has not been ad-
dressed in the past, is that if certain terms could be considered to be equivalne. To that
purpose, we will define two congruences for T that look like associativity and commu-
tativity.

Definition 6.

(f-assoc): (P& T2Q)F TR = PatRQBTGR) if f2fp(P) & x Zi(R)
(left-comm): PG 17(QF t7R) 2 0B TGPATTR) it e Ef(Q) &y Ef(P)
(right-comm): (PG 17Q)F1JR = (PR1TR)A17Q if a &fp(R) & B £fp(Q)

Rule (}-assoc) allows us to write Pa T:?QB TyR (provided the side-condition is
fulfilled) since the order of the applications of cuts is irrelevant. Notice that the side-
condition for this rule is the one we have indicated for (ins), and comes from the vari-
able convention. This is consistent with the parenthesis-free notation we have used for
the right-hand side of (ins). Notice that now writing P& 2Qa T Z R is licit. The second
rule is left-commutativity and the third rule is right-commutativity.

There is another rule asserting the associativity of the mediators, given by:

(med-assoc) : Pa [2] QB [u] R) = (Pa [2] 2Q)B [u] GR
if B¢ fp(P)\{a}, 2 &fs(R)\{y}

Observe that, unsurprisingly, the side-condition is the same as for the cut. We will freely
write Pa [2] ZQS [u] YR

88 S. van Bakel, S. Lengrand, and P. Lescanne

2.4 Call-by-Name and Call-by-Value

In this section we will define two sub-systems of reduction, that have a strong con-
nection to call-by-value (CBV) and call-by-name (CBN) reduction. Notice that this is
essentially different from the approach of [23], where, as in Aufi, only one notion of
reduction is defined; the CBN-CBV result there was obtained via different interpretation
functions from CBN/CBV calculi.

As mentioned above, when P does not introduce « and () does not introduce x,
PatzqQ is a superposition, meaning that two rules, namely (act-L) and (act-R), can
both be fired which can lead to different irreducible terms: — is not confluent. The sub-
systems of reduction we will introduce explicitly favour one kind of activating whenever
the above critical pair occurs; these were shown to be confluent in [17] when restricted
to typeable terms, and we conjecture that this result can be extended to untyped terms.

Definition 7. - We write P —y @ for the sub-reduction system that only activates a
cut via (act-L) when it could be activated in two ways.
— Likewise, we write P — @ for the sub-reduction system that only activates such a
cut via (act-R).

The reason to use the names CBV and CBN in fact comes from the fact that these
systems successfully implement their counterparts in the A-calculus (see Theorem 23).
And, in fact, the use of the terminology CBV is justifiable, when at the same time calling
values those circuits that introduce a plug. But, in contrast to the case for the A-calculus,
our two systems are really dual, and we actually should use a terminology like ’call-by-
*”, where ‘%’ is a name for those circuits that introduce a socket. At the moment, there
is no clear idea on what ‘x’ should be, so we will use the (misnomer) CBN.

We will now state some basic properties, which essentially show that the calculus is
well behaved. Recall that a term is pure if it contains no activated cuts.

Lemma 8 (Cancellation).

1. PatxQ —y P ifa & fp(P) and P is pure.
2. PatzQ —\Q ifz € f5(Q) and Q is pure.

We will now show that a cut with a capsule leads to renaming.
Lemma 9 (Renaming).

1. PST%\(z.a) — Pla/é), if P is pure.
2. (z.a)atzP — Plz/x], if P is pure.

These results motivate the extension (in both sub-systems) of the reduction rules, for-
mulating new rules in the shape of the above results.

3 Expressing the Natural Numbers in X

The example of expressing natural numbers into A’ that we will give in this section is
interesting in two respects. Firstly, it shows how a basic structure can be embedded in
X. Secondly, it shows many features and among them a-conversion.

The Language A’: Circuits, Computations and Classical Logic 89

A natural number is represented in X by a sequence of capsules connected by me-
diating sockets, i.e., with the same used names.

We assume that natural numbers have two free sockets = and f and one free plug «,
with x as entry socket, « as exit plug and f as mediating socket. We define 0 as (z.«)
and succ(N) as Na [f] Z(xz.c) where N itself is a natural number (which violates
Barendregt’s convention and should be removed in actual use). By induction it follows
that = and o have both a unique occurrence in each natural number.

Lemma 10. [f N is a natural number, then Na [f] Z{z.a) = (z.a)a [f] ZTN.

Lemma 11. If Ny and N are natural numbers, then (—yg is either —v or —y)

1. (M@ [f] 2{z.a))at N2 —s Ni@ [f] ZNs
2. Niat2(Na@ [f] (z.q)) —s N1 [f] 2N

Definition 12 (Addition and multiplication).
add(Ny,No) = Nya1ZN, times(Ny, No) = (EN1a-B)31 fNa
Using this definition, we can show that the normal properties for addition hold.
Lemma 13 (Properties of add).

add({(xz.a), N) —, N

)
add(N, (z.c)) —4 N
add(N1a [f] Z{z.a)), N3) —, add(Ny, Na)a [f] T(x.q)
add(Ny1, Naa [f] Z(z.a)) —a add(Ny, No)a [f] T(x.c)

From Lemma 13 we get, by induction:

add(0, N) = N add(succ(Ni), N2) = succ(add(Ny, Nz))
add(N,0) = N add(succ(Ny), N2) = succ(add(Ny, Na)).

From them we can prove: add(Ny, No) = add(Ns, N1)
add(Nl, add(Ng, Ng)) = add(add(Nl, NQ), Ng)
The key point of the definition of times is that the ins rule copies Ny into /V; at each
of the occurences of f.

Lemma 14 (Properties of times).
times(N,0) —, 0
times(Ny, succ(N3)) —, add(times(N7, N3), N1)
4 Typing for X

The notion of type assignment on X’ that we present in this section is the basic implica-
tive system for Classical Logic (Gentzen system LK). The Curry-Howard property is
easily achieved by erasing all term-information.

90 S. van Bakel, S. Lengrand, and P. Lescanne

Definition 15 (Types and Contexts).

1. The set of types is defined by the grammar: A, B ::= ¢ | A—B. The types con-
sidered in this paper are normally known as simple (or Curry) types.

2. A context of sockets I" is a mapping from sockets to types, denoted as a finite set
of statements x: A, such that the subject of the statements (x) are distinct. When we
write I7, I'> we mean the union of I} and I'> when I} and I5 are coherent (if 17
contains x: A1 and I'; contains x: A then A1 = A»).

Contexts of plugs A are defined in a similar way.

Definition 16 (Typing for X).

1. Type judgements are expressed via a ternary relation P ;- I' = A, where I is a
context of sockets and A is a context of plugs, and P is a circuit. We say that P is
the witness of this judgement.

2. Type assignment for X is defined by the following sequent calculus:

g P..T'rFaAA Q. INe:BFA
) (ya) - DyAraaa M poan b yASBE A
P TIxAFa:B, A P. . T'raA A Q. INu:AFA
(exp) : (cur) o
FPa-B: '+ B:A-B, A PatzQ - I' A

We write P ;- I' = A if there exists a derivation for this judgement.

I" and A carry the types of the free connectors in P, as unordered sets. There is no
notion of type for P itself, instead the derivable statement shows how P is connectable.
We can now provide the type naturals.

— The type of natural numbersin X' is N - z:A, f:A — AF a:A.

The soundness result of simple type assignment with respect to reduction is stated
as usual:

Theorem 17 (Witness reduction).

1.IfP .- T'tA and P — Q, thenQ - I' - A.
2 IfP - TFAandP2Q thenQ:- T'F A

Theorem 18 (Strong normalisation [22]). If P .- '+ A, then P is strongly normal-
ising.

S Interpreting the A-Calculus

In this section, we illustrate the expressive power of X’ by showing that we can faithfully
interpreted the the A-calculus [6], and in the following sections we will show a similar
result for Ax and Apu. Using the notion of Curry type assignment, we will show that
assignable types are preserved by the interpretation.

The Language A’: Circuits, Computations and Classical Logic 91

In part, the interpretation results could be seen as variants of similar results obtained
by Curien and Herbelin in [9]. Indeed, we could have defined our mappings using the
mappings of the A-calculus and Ay into Apji, and concatenating those to the mapping
from Apjfi to X, but our encoding is more detailed and precise than that, and deals with
explicit substitution as well. In fact, we will show that our interpretation encompasses
CBV and CBN reduction, something that has not been achieved in [9], and will argue
that X in fact does more than that, like expressing explicit substitution.

One should notice that for [9] the preservation of the CBV-evaluation and CBN-
evaluation relies on two distinct translations of terms. For instance, the CBV- and CBN-
the A-calculus can both be encoded into CPS [2], and there it is clear that what accounts
for the distinction CBV/CBN is the encodings themselves, and not the way CPS reduces
the encoded terms.

So, when encoding the A-calculus in Apji, the distinction between CBV and CBN
mostly relies on Curien and Herbelin’s two distinct encodings rather than the features
of Aupi (the same holds for [23]). Whereas there the CBN-translation seems intuitive,
they apparently need to twist it in a more complex way in order to give an accurate inter-
pretation of the CBV-the A-calculus, since the CBV-interpretation of a term M reduces
to its CBN-interpretation. This is a bit disappointing since the CBN-encoding turns out
to be more refined than the CBV-encoding, breaking the nice symmetry.

In contrast, in X we have no need of two separate interpretation functions, but will
define only one. Combining this with the two sub-reduction systems —y and —yx we
can encode the the CBV- and CBN-the A-calculus. We can compare this to what is done
by Danos, Joinet, Shellinx, when they write (before section 3.1.2: “Note that choosing
colours has nothing to do with imposing a strategy. We don not select redexes, but rather
the way we want to reduce them ...”

We first define the direct encoding of the A-calculus into X’:

Definition 19 (Interpretation of the A-calculus in X').
Tzl) = (z.a)
[D\xMJJ,;‘ = EEWMJJgﬂa
TMN]S = TMIZF1E(TN I35 2] §ly-0))

Observe that every sub-term of [M JJQ has exactly one free plug.
Definition 20 (Curry type assignment for the \-calculus).

Ix:AF\NM:B

(Ax) :
'y e M:A—B

: (—I)
Ie:Abyx: A

F}_)\MA—)B FI‘)\NIA
' '\ MN:B

(—E)

We can now show that typeability is preserved by -] 2 :

Theorem 21. If 'y M: A, then [M |} - T'F a:A.

92 S. van Bakel, S. Lengrand, and P. Lescanne

IS

Taal 3 2 M) mz [xe.az) 27 [2] 9(y.58))

ﬂ—chJ o 5)5Tz ﬂ—)\w :m:JJ,Y*y y(y.0)) — (ins)
”Am.x;cﬂ,ﬂ’fm Wmmﬂaoﬂry y,B)) — (9-7?)
hz.zz] A)ﬁ]‘fﬂ—xxﬂg 2
Az :m‘JJ,Y'yTJc (.6)6 [] 5(y.B)) — (act-R)
[xe.ar] 373 3((w.0)5 2] 7(0.6)) ~ (®3)
ﬂ—)\w:m:ﬂi‘ﬁ]‘z(Az :m‘JJA/'y\x (2.6))0 [2] 7([Az .Z“%‘JJ,Y’Y)\.T (y.0))) — (L1)
M\z.zz] i‘ﬁ]‘ 2([Az. :m‘JJ ,Y*y\x 2.6))0 [2] 5(y.B8)) — (dr & 9-7?)
”Amxwﬂi‘ﬁ’fz(ﬂ)\m x;cJJ5 [2] 9{y.cx)) = WAAJJQ

Fig. 3. Reduction of the interpretation of the lambda term (\z.zz)(Az.zx)

When encoding the CBV-the A-calculus, we also use the [-]] 2 interpretation. And,
in contrast to Apfi, we can get an accurate interpretation of the CBV-the A-calculus into
X by using the —y system, which we can reformulate as the reduction system obtained
by replacing rule (act-R) by:

(act-R') : Pa1xQ — PaxzQ, if P introduces «a and Q) does not introduce x

Lemma 22. [N |56XZ[M |, —, TM[N/z] ..
Theorem 23 (Simulation of the \-calculus).

1. If M —y N then [M]5—, [N
2. If M —x N then [M |5 — N2

Now notice that (Az.M)(PQ) is not an redex in the CBV-A-calculus. We get

[M)(PQ)] 2 — (TP1YG+HTQLN [1] Guny)))F t21M 3

In particular, v is not introduced in the outer-most cut, so (act-L) can be applied.
What the call-by-value reduction should block, however, is that (act-R’) can be applied;
then the propagation of [P]25 1t #([Q1 27 [t] @(u.y)) into [M]) is blocked (which
would produce [M[(PQ)/x]]2). Notice that we can only apply rule (act-R’) if both
TPI2G +E(TQL27 [t] @(un)) introduces and [M] does not introduce . This is
not the case, since the first test fails.

On the other hand, if IV is a A-value (i.e. either a variable or an abstraction) then
(Y JJC); introduces « (in fact, N is a value if and only if [N JJQ introduces «). Then
TN] i‘ﬁ +Z[M] cannot be reduced by rule (act-L), but by either rule (act-R) or a
logical rule. This enables the reduction

INI2F12IN]Y —v TN[M/a]]).

So cBV-reduction for the A-calculus is respected by the interpretation function, using

—v .

The Language A’: Circuits, Computations and Classical Logic 93

It is worthwhile to notice that the interpretation function [HJC); does not generate a
confluent sub-calculus. Indeed, we have both

[Owa2) () Iy — (0.8)8 o) 7((e2)7 [2] Dv.))_ and
TOvran) () 1) — (5.8)8 1) a(((w2)7 1] B(0.6)5 [a) elc.a))

both normal forms. This is of course not surprising, seen that (Az.xzx)(yy) has different
normal forms with respect to CBN and CBV reduction.

To conclude this section, and illustrate the expressive power of X as abstract ma-
chine for reduction, Figure 3 shows an infinite reduction sequence in X.

6 Interpreting Ax

We will now interpret a calculus of explicit substitutions, namely Ax [8], where any (-
reduction of the A-calculus can be split into several more atomic steps of computation.
In this section we show that X has a fine level of atomicity as it simulates each reduction
step by describing how the explicit substitutions interact with terms.

We briefly recall here the calculus Ax.

Definition 24 ()\x). The syntax of Ax is an extension of that of the A-calculus:
M = x| e.M | MMy | M{xz=N)
The reduction relation is defined by the following rules

(Ae.M)P — M(z=P) (B) x(x=P) — P (Varl)
(MN){(z=P) — M{(x=P)N{(z=P) (App) y(z=P) — y (VarK)
(Ay.M){z=P) — \y.(M(z=P)) (Abs) M {(x=P) — M, if x & fv(M) (gc)

Notice that the notion of reduction Ax is obtained by deleting rule (gc), and the
notion of reduction Axgc is obtained by deleting rule (VarK). The rule (gc) is called
‘garbage collection’, as it removes useless substitutions. We will write —x for either
reduction system.

Definition 25 (Interpretation of Ax in X'). We define [[-| ¥ as the interpretation [-]),
by adding: R
[M(z=N)1a = TN]BRZIM]S.

Now we show that the reductions can be simulated, preserving the evaluation strat-
egies. Our notion of CBV-Ax is naturally inspired by that of the A-calculus: in a CBV-
(B-reduction, the argument must be a value, so that means that when it is simulated by
CBV-\X, all the substitutions created are of the form M (x = N) where N is a value,
that is, either a variable or an abstraction, just as in the A-calculus. Hence, we build the
CBV-)x by a syntactic restriction:

M=z | M| MMy | M{z=Xx.N)| M{z=y).

Now notice that, again, NV is a value if and only if (Y sz introduces a.

94 S. van Bakel, S. Lengrand, and P. Lescanne

Theorem 26 (Simulation of rule (B)).

CBN: [(Ae. M)N]L—y M (z=N)]X
cBV: [(Ae.M)N |y —y [M (x=N)|}iff N is a value.

Theorem 27 (Simulation of the other rules). Let M — N by any of the rules (App),
(Abs), (Varl), (VarK), (gc), then [M |5 — TN and [M |5 — TN

We can now state that Ax-reduction is preserved by interpretation of terms into X

Theorem 28 (Simulation of)\x).

1. If M —y N then [M |5 —, [N]
2. If M —\ N then WMJJ:—W WNJJ:

7 Interpreting Ap

Parigot’s Apu-calculus [21] is yet another proof-term syntax for classical logic, but
expressed in the setting of Natural Deduction. Curien and Herbelin [9] have shown
how the normalisation in Ax can be interpreted as the cut-elimination in Apji. Using
that mapping, and the interpretation of Ay into A from [17], we can generate the
following:

Definition 29 (Interpretation of Ay in X). We define [- | 2 as the interpretation -]),
by adding: R
Tud. Y] M I3 = M6+ 3 (.0

Similarly to the previous sections, we can add:

TMIN/2) o = TNDBtETMIS"
T(us. [M)N-6/8)1 5" = TM 1351 2(TN 133 [2] §ly.))

Notice that the last alternative is justified, since

Lemma 30. The following rule is admissible:
T(uo. Y IM)NLH — TM]5+2(TN] B [2] Gly.a))

Notice also the striking similarity between [MN|2* and the result of running
T(u6.[y)M))N | 2*; the difference lies only in a bound socket.
The main result for this interpretation now becomes:

Theorem 31 (Simulation of Ay in X).

1. If M —y N then [M |2 — [N
2. UM —N N then WMﬂalt —N WNﬂaH.

The Language A’: Circuits, Computations and Classical Logic 95

8 Conclusions and Future Work

We have seen that X is a continuation-style formal language that provides a Curry-
Howard-de Bruijn isomorphism for a sequent calculus for implicative classical logic.
But, of more interest, we have seen X’ is very well-suited as generic abstract machine
for the running of (applicative) programming languages, by building not only an inter-
pretation for A, Au (for A\uji, see [17]), but also for Ax.

A wealth of research lies in the future, of which this paper is but the first step, the
seed. We intend to study normalisation, and confluence of the CBN and CBV strategies,
to extend A" in order to represent the other logical connectives, study the relation with
linear logic, proofnets (both typed and untyped), the relation with 7-calculus, how to
express recursion, functions, etc, etc.

Acknowledgements

We would like to thank Alexander Summers, Daniel Hirschkoff, Dragisa Zunic, Harry
Mairson, Jamie Gabbay, Jayshan Raghunandan, Luca Cardelli, Luca Roversi, Maria
Grazia Vigliotti, Mariangiola Dezani-Ciancaglini, Philippe Audebaud, and Simona Ronchi
della Rocca for many fruitful discussions on the topic of this paper.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Func-
tional Programming, 1(4):375-416, 1991.
2. A. W. Appel and T. Jim. Continuation-passing, closure-passing style. In POPL’89, pages
293-302, 1989.
3. S. van Bakel and J. Raghunandan. Implementing X. In TermGraph’04, ENTCS, 2005.
4. S. van Bakel, J. Raghunandan, and A. Summers. Term Graphs, a-conversion and Principal
Types for X, 2005.
5. F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction.
Information and Computation, 125(2):103-117, 1996.
6. H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, 1984.
7. H.P. Barendregt and S. Ghilezan. Lambda terms for natural deduction, sequent calculus and
cut-elimination. Journal of Functional Porgramming, 10(1):121-134, 2000.
8. R. Bloo and K.H. Rose. Preservation of strong normalisation in named lambda calculi with
explicit substitution and garbage collection. In CSN’95, pages 62-72, 1995.
9. Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ICFP’00, pages
233-243, 2000.
10. Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Computational isomorphisms in
classical logic (extended abstract). ENTCS 3, 1996.
11. Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstructive logic:
Linear logic. The Journal of Symbolic Logic, 62, 1997.
12. A. G. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory, volume 67 of
Translations of Mathematical Monographs. American Mathematical Society, 1987.
13. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
14. J.-Y. Girard. A new constrcutive logic: classical logic. Mathematical Structures in Computer
Science, 1(3):255-296, 1991.

96

15

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

S. van Bakel, S. Lengrand, and P. Lescanne

H. Herbelin. Séquents qu’on calcule : de U'interprétation du calcul des séquents comme
calcul de \-termes et comme calcul de stratégies gagnantes. Theése d’université, Université
Paris 7, 1995.

S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel. Intersec-
tion types for explicit substitutions. Information and Computation, 189(1):17-42, 2004.
Stéphane Lengrand. Call-by-value, call-by-name, and strong normalization for the classical
sequent calculus. In ENTCS, volume 86. Elsevier, 2003.

P. Lescanne. From Ao to Av, a journey through calculi of explicit substitutions. In POPL’94,
pages 60-69. ACM, 1994.

G. Gentzen. Untersuchungen iiber das Logische Schliessen. Mathematische Zeitschrift,
39:176-210 and 405-431, 1935. English translation in [20], pages 68—131.

M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1969.

M. Parigot. An algorithmic interpretation of classical natural deduction. In LPAR’92, LNCS
624, pages 190-201, 1992.

Christian Urban. Classical Logic and Computation. PhD thesis, University of Cambridge,
2000.

Philip Wadler. Call-by-Value is Dual to Call-by-Name. In ICFP’03, pages 189 — 201, 2003.
A N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, 1925.
A. N. Whitehead and B. Russell. Principia Mathematica to *56. Cambridge University
Press, 1997.

Checking Risky Events Is Enough
for Local Policies

Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari

Dipartimento di Informatica, Universita di Pisa, Italy
{bartolet, degano, giangi}@di.unipi.it

Abstract. An extension of the A-calculus is proposed to study history-
based access control. It allows for parametrized security policies with
a possibly nested, local scope. To govern the rich interplay between lo-
cal policies, we propose a combination of static analysis and dynamic
checking. A type and effect system extracts from programs a correct
approximation to the histories obtainable at run-time. A further static
analysis over these approximations determines how to instrument code
so to enforce the desired security constraints. The execution monitor,
based on finite-state automata, runs efficiently the instrumented code.

1 Introduction

Access control is crucial for securing the execution of mobile applications. Access
control policies specify which operations can be executed by possibly untrusted
components on sensible resources such as files, communication channels, and so
on. Indeed, an attacker may gain full control over a system by getting improper
access to critical resources.

Current software technologies enforce access control policies by exploiting
different mechanisms. In the Java Virtual Machine, as well as in the .Net Com-
mon Language Runtime, stack inspection computes the run-time access rights
of code by examining the stack of method invocations. Code includes special
time-consuming instructions, called local security checks, that guard access to
critical resources. Methods are associated with a static set of permissions, to re-
flect the trustedness of code. At run-time, a resource access is granted whenever
all methods in the call stack have the required permission.

Stack inspection and local security checks offer a pragmatic setting for access
control, with a strong bias towards implementation. However, they suffer fro